首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal decomposition of phthalamic acid derivatives chemically bonded to the surface of silica gel was examined and utilized for the generation of single-component gaseous standard mixtures of ammonia, methylamine, diethylamine and triethylamine. The conditions of the thermal decomposition (temperature, time, diluent gas flow rate) were optimized to ensure complete liberation and rapid elution of the compounds from the bed of modified silica gel. The total amounts of these four compounds that can be released from unit mass of the modified silica gel are in the range of several mg.  相似文献   

2.
The new type of silica gel surface modification with using the trimethylamine as a reagent is described. The samples of chemically modified silica gel have been used for generation of gaseous standard mixtures (methyl chloride as a measurand) using the technique of thermal decomposition of the surface compound. The main aim of the research was to check the suitability of the new type of silica gel surface modification for obtaining methyl chloride as a measurand of gaseous standard mixture. The gaseous standard mixture obtained with using this technique was used for calibration of a thermal desorber-gas chromatography-flame ionization detector (TD-GC-FID) system. The homogeneity of coverage of silica gel surface with the immobilized compound has been evaluated. The full uncertainty budget of determination of liberated amount of methyl chloride has been calculated. The average amount of methyl chloride liberated from the unit sample of chemically modified silica gel is 3.59 +/- 0.13 mg g(-1). The influence of the modification way on the amount of liberated analyte has also been determined.  相似文献   

3.
The use of glass fiber as a support material for a surface compound serving to generate gaseous standard mixtures of ethene is described. The technique is based on the process of thermal decomposition of the surface compound in a desorber connected on‐line via a multi‐port valve to the calibrated device. The surface compound undergoes thermal decomposition at 245°C, yielding known amounts of ethene. The method enables on‐line preparation of a standard mixture immediately before the calibration step. Consequently, it can be also applied for the generation of standard mixtures containing volatile, malodorous, unstable, and toxic compounds.  相似文献   

4.
The paper presents a new method for the generation of acetaldehyde in the amounts that allow to calibrate the measuring system. The method is based on thermal decomposition of surface compounds at the range 130-190 °C, in which an acetaldehyde as the decomposition product is released. The synthetic pathway leading to the desired surface compounds is described. Investigations demonstrated that the synthesis of the compounds on the surface of the support material (silica gel) was carried out homogeneously. The technique proposed was used for the generation of gaseous standard mixtures containing acetaldehyde for the calibration of a thermal desorber-gas chromatograph-flame ionization detector system.  相似文献   

5.
Summary Fused silica capillary columns of different diameters and polarities are linked to a thermal energy analyzer and a flame ionisation detector for comparison. Extra column effects are discussed. Unsymmetrical homologue nitrosamines are applied in order to assign the volatile nitrosamines most often to be determined by their linear indices rather than by their overall retention times.  相似文献   

6.
A novel adsorbent, 3-amino-propylsilica gel-multi-walled carbon nanotubes (APSG-MW), was prepared by chemical bonding multi-walled carbon nanotubes on silica gel. The surface area of APSG-MW was 98 m2/g, and the particle size was between 60 and 80 mesh with the average size of 215.0 μm. The adsorption capability of the new adsorbent to volatile organic compounds (VOCs) was measured. The effect of water to the adsorbent and its stability during storage were also investigated. Duplicate precision (DP) and distributed volume pair (DVP) on the basis of the EPA TO-17 criteria were estimated. The results showed that the sampling precision of the adsorbent was more superior compared to the MWCNTs because of the better air permeability. The new adsorbent was successfully applied in the determination of VOCs in ambient indoor air.  相似文献   

7.
A mesoporous carbon was fabricated using MCM‐41 as a template and sucrose as a carbon source. The carbon material was coated on stainless‐steel wires by using the sol–gel technique. The prepared solid‐phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o‐xylene, bromobenzene, and 4‐chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 μg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 μg/L ranged from 73.1 to 99.1%.  相似文献   

8.
E.S. Farrell  G.E. Pacey 《Talanta》2010,82(2):739-744
A new dispersive vapor extraction (DVE) technique for rapid removal of selected volatile organic compounds (VOCs) from gaseous mixtures was investigated. In this technique, less than 1.0 mL of a volatile solvent was vaporized for 8 min in a 250-mL flask containing a gaseous mixture. The flask was then cooled under running tap water for 2-3 min to induce condensation of the vapor and co-extraction of the VOCs from the headspace. The technique was tested over a concentration range of 4-23 ppb, and resulted in extraction efficiencies ranging from 80 to 97% for the VOCs tested. Because of its simplicity and the relatively short sampling time, DVE could potentially lead to high sample throughput and rapid air analysis.  相似文献   

9.
A new and efficient method was described for an easy synthesis of functionalized mesoporous silica (MCM-41) using thiophene-2-carbaldehyde. This new chemically bonded analytical reagent was used as an effective sorbent for the solid phase extraction of palladium(II) ion from aqueous solutions. Conditions for effective adsorption of trace levels of palladium concentration were optimized with respect to different experimental parameters in batch process. Thiourea solution could efficiently elute adsorbed palladium(II) ion from the surface of the sorbent which then was determined by inductively coupled plasma atomic emission spectrometer (ICP-AES).Common coexisting ions did not interfere with the separation and determination. The preconcentration factor was 100 (1 ml elution volume) for a 100 ml sample volume. The limit of detection of the proposed method is 0.2 ng ml−1. The maximum sorption capacity of sorbent under optimum conditions has been found to be 5 mg of palladium per gram of sorbent. The relative standard deviation under optimum conditions was 3.2% (n = 10). Accuracy and application of the method was estimated by using test samples of natural and synthetic water spiked with different amounts of palladium(II) ion.  相似文献   

10.
In this study, the feasibility of solid‐phase extraction combined with gas chromatography and mass spectrometry in tandem with partial least squares discriminant analysis was evaluated as a useful strategy to differentiate wines according to geographical origin (Azores, Canary and Madeira Islands) and types (white, red and fortified wine) based on their global volatile patterns. For this purpose, 34 monovarietal wines from these three wine grape‐growing regions were investigated, combining the high throughput extraction efficiency of the solid‐phase extraction procedure with the separation and identification ability. The partial least squares discriminant analysis results suggested that Madeira wines could be clearly discriminated from Azores and Canary wines. Madeira wines are mainly characterized by 2‐ethylhexan‐1‐ol, 3,5,5‐trimethylhexan‐1‐ol, ethyl 2‐methylbutanoate, ethyl dl ‐2‐hydroxycaproate, decanoic acid, 3‐methylbutanoic acid, and (E)‐whiskey lactone, whereas 3‐ethoxypropan‐1‐ol, 1‐octen‐3‐ol, (Z)‐3‐hexenyl butanoate, 4‐(methylthio)‐1‐butanol, ethyl 3‐hydroxybutanoate, isoamyl lactate, 4‐methylphenol, γ‐octalactone and 4‐(methylthio)‐1‐butanol, are mainly associated with Azores and Canary wines. The data obtained in this study revealed that solid‐phase extraction combined with gas chromatography and quadrupole mass spectrometry data and partial least squares discriminant analysis provides a suitable tool to discriminate wines, both in terms of geographical origin as well as wine type and vintage.  相似文献   

11.
Organic functionalization of a silica surface has been realized by employing arylsilanes. Grafting reactions of aryl(3-chloropropyl)dimethylsilanes (aryl = p-anisyl, p-tolyl, phenyl) with silica were carried out in heptane at 80 °C for 24 h. The 29Si and 13C CP/MAS spectra of the obtained silica materials clearly showed that the 3-chloropropyldimethylsilyl moieties were cleanly grafted onto silica via a siloxane (Si-O-Si) bond accompanied by the release of the aryl groups. The loading amounts on FSM-type mesoporous silica (TMPS-4) with aryl(3-chloropropyl)dimethylsilanes were comparable to those with 2-propenylsilane and the most commonly used methoxysilane.  相似文献   

12.
The paper presents a new method for the determination of a volatile component of a gaseous standard mixture obtained by thermal decomposition of a suitable surface compound. The amount of the analyte generated (under given conditions of thermal decomposition) per unit of mass of the chemically modified material has been determined exclusively on the basis of measuring generation time. Therefore, the total error of the determination of the amount of a standard compound depends solely on the respective errors of weighing the material and measuring its decomposition time (both being direct measurements). This new method permits obtaining a few measuring points on the basis of a single sample of the material with chemically modified surface.  相似文献   

13.
We have synthesized an organic–inorganic polyaniline–halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless‐steel wire and can be used as a fiber coating for solid‐phase microextraction. It was found that our new solid‐phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis.  相似文献   

14.
Research on the chemical composition of fossil resins has evolved during the last decades as a multidisciplinary field and is strongly oriented toward the correlation with their geological and botanical origin. Various extraction procedures and chromatographic techniques have been used together for identifying the volatile compounds contained in the fossil resin matrix. Hyphenation between thermal desorption (TD), gas chromatography (GC) and mass spectrometry detection (MS) has been chosen to investigate the volatile compounds fraction from ambers with a focus on Romanite (Romanian amber) and Baltic amber species. A data analysis procedure was developed for the main purpose of fingerprinting ambers based on the MS identity of the peaks generated by the volatile fraction, together with their relative percentual area within the chromatogram. Chromatographic data analysis was based entirely on Automated Mass Spectral Deconvolution & Identification System (AMDIS) software to produce deconvoluted mass spectra which were used to build-up a mixed mass spectra and relative retention scale library. Multivariate data analysis was further applied on AMDIS results with successful discrimination between Romanite and Baltic ambers. A special trial was conducted to generate pyrolysis “like” macromolecular structure breakdown to volatile compounds by gamma irradiation with a high absorbed dose of 500 kGy. Contrary to our expectations the volatile fraction fingerprints were not modified after irradiation experiments. A complementary non-destructive new approach by ESR spectroscopy was also proposed for discriminating between Romanite and Baltic ambers.  相似文献   

15.
A novel solid phase microextraction fiber was prepared for the first time by using a sol–gel technique with hydroxypropyl‐β‐cyclodextrin‐functionalized reduced graphene oxide as the fiber coating material. The results verified that the β‐cyclodextrin was successfully grafted onto the surface of reduced graphene oxide and the coating possessed a uniform folded and wrinkled structure. The performance of the solid phase microextraction fiber was evaluated by using it to extract nine volatile aromatic compounds from water samples before determination with gas chromatography and flame ionization detection. Some important experimental parameters that could affect the extraction efficiency such as the extraction time, extraction temperature, desorption temperature, desorption time, the volume of water sample solution, stirring rate, as well as ionic strength were optimized. The new method was validated to be effective for the trace analysis of some volatile aromatic compounds, with the limits of detection ranging from 2.0 to 8.0 ng/L. Single fiber repeatability and fiber‐to‐fiber reproducibility were in the range of 2.5–9.4 and 5.4–12.9%, respectively. The developed method was successfully applied to the analysis of three different water samples, and the recoveries of the method were in the range from 77.9 to 113.6% at spiking levels of 10, 100, and 1000 ng/L, respectively.  相似文献   

16.
<正>Triacontyl modified silica gel as a sorbent coupled with gas chromatography-mass spectrometry(GC-MS) was developed to determine EPA prior 16 polycyclic aromatic hydrocarbons(PAHs) in water samples.Various parameters of solid-phase extraction such as organic modifier solvent,eluent,sample flow rate and volume were optimized.The developed method was found to yield a linear calibration curve in the concentration range of 0.05-8μg/L with respect to naphthalene,acenaphthylene,acenaphthene and 0.01-8μg/L for dibenz[a,h]anthracene and 0.05-14μg/L for fluorene,phenanthrene,anthracene and 0.01-14μg/L for the rest of analytes.Furthermore,the good accuracy and repeatability of the method made sure the requirements for achieving reliable analysis of PAHs in the environmental water samples,and the recoveries of optimal method were in the range of 80-120%except to higher volatility PAHs.C_(30)-bonded silica was proved to be an efficient sorbent for extraction of high molecular weight PAHs.  相似文献   

17.
The present work shows the feasibility of preparing transparent titania coatings being doped with platinum nanoparticles by sol–gel processing. The used platinum nanoparticles are modified by two different functional thiol ligands, mercaptoethanol and mercaptopropionic acid. The functional ligands are used to create a nanoparticle network and they can also promote anchorage of titanium alkoxides as sol–gel precursors, ensuring a regular distribution of the metal nanoparticles within the coating as well as a good stability to the film.  相似文献   

18.
We present a new software to easily perform QM:MM and QM:QM' calculations called QMX. It follows the subtraction scheme and it is implemented in the Atomic Simulation Environment (ASE). Special attention is paid to couple molecular calculations with periodic boundaries approaches. QMX inherits the flexibility and versatility of the ASE package: any combination of methods namely force field, semiempirical, first principle, and ab initio, can be used as hybrid potential energy surface (PES). Its ease of use is demonstrated by considering the adsorption of Al2Cl3Me3 on silica surface and by combining different levels of theory (from standard DFT to MP2 calculations) for the so‐called High Level cluster with standard PW91 density functional theory calculations for the Low Level environment. It is shown that the High Level cluster must contain the silanol group close to the aluminum atoms. The bridging adsorption is favored by 58 kJ mol?1 at the MP2:PW91 level with respect to the terminal position. Using large clusters at the MP2:PW91 level, it is shown that PW91 calculations are sufficient for structure optimization but that embedded methods are required for accurate energy profiles. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
There is a great deal of interest in decompositions of multilinear component models in the field of multi-way calibration, especially the three-way case. A flexible novel trilinear decomposition algorithm of the trilinear component model as a modification of an alternating least squares algorithm for three-way calibration is proposed. The proposed algorithm (constrained alternating trilinear decomposition, CATLD) is based on an alternating approximate least-squares scheme, in which two extra terms are added to each loss function, making it more efficient and flexible. The analysis of simulated three-way data arrays shows that it converges fast, is insensitive to initialization, and is insensitive to the overestimated number of components used in the decomposition. The analysis of real excitation–emission matrix (EEM) fluorescence and real high performance liquid chromatography–photodiode array detection (HPLC–DAD) data arrays confirms the results of the simulation studies, and shows that the proposed algorithm is favorable not only for EEMs but also for HPLC–DAD data. The three-way calibration method based on the CATLD algorithm is very efficient and flexible for direct quantitative analysis of multiple analytes of interest in complex systems, even in the presence of uncalibrated interferents and varying background interferents. Additionally, a theoretical extension of the proposed algorithm to the multilinear component model (constrained alternating multilinear decomposition, CAMLD) is developed.  相似文献   

20.
This study describes a new approach to cold-fiber solid-phase microextraction (CF-SPME) based on a combination of different extraction modes in the same extraction procedure. Also, the high quantity of water required to facilitate both the desorption of analytes from the matrix and their transport to the fiber coating is reported. The extraction mode was changed from the direct to the headspace mode in a single extraction while manipulating the extraction times and coating temperature to improve the extraction of compounds with different volatilities. Compounds with low volatility were better extracted in the direct mode, while the headspace mode was more appropriate for volatile compounds. Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PEs) in sand or soil samples were used as model compounds and matrices in this study. The optimized conditions were: sample pH in the range of 4-7, addition of 12 mL of 194 g L(-1) aqueous NaCl solution in a 15 mL vial, and 80 min total extraction time with a sample temperature of 90°C (50 min in direct mode with coating at 90°C followed by 30 min in headspace mode with coating at 30°C). The proposed procedure was compared with conventional CF-SPME (with and without addition of water) and was found to be more effective for all the analytes, since it is capable of extracting both heavier and lighter compounds from soil samples in a single extraction procedure. The use of an excess of water and a combination of extraction modes in the same CF-SPME procedure are the main factors responsible for this enhancement. The proposed method was applied to the extraction of PAHs and PEs in spiked soil samples and excellent results were obtained for most of the compounds evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号