首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A novel scalable procedure for the thermally initiated polymerisation of bonded monolithic porous layers of controlled thickness within open tubular fused silica capillaries (monoPLOT columns) is presented. Porous polymer layers of either polystyrene-divinylbenzene or butyl methacrylate-ethylene dimethacrylate, of variable thickness and morphology were polymerised inside fused silica capillaries utilising combined thermal initiation and laminar flow of the polymerisation mixture. The procedure enables the production through thermal initiation of monoPLOT columns of varying length, internal diameter, user defined morphology and layer thickness for potential use in both liquid and gas chromatography. The morphology and thickness of the bonded polymer layer on the capillary wall is strongly dependent on the laminar flow properties of the polymerisation mixture and the changing shear stress within the fluid across the inner diameter of the open capillary. Owing to the highly controlled rate of polymerisation and its dependence on fluid shear stress at the capillary wall, the procedure was demonstrably scalable, as illustrated by the polymerisation of identical layers within different capillary diameters.

  相似文献   

2.
An elastic inner wall coating in the fused silica capillaries used for Micro-LC (LC on packed fused silica capillary columns) stabilizes the packed bed and thus increases column efficiency and life expectancy. Probably the particles of packing material are partly forced into the elastic polymer layer which thus holds the packing in position. Bonded polymers of very different chemical polarity can be used with equally good results. Variation of the coating layer thickness shows that there is an optimum value around 0.3 μm. A discussion of various wall effects in LC columns is presented. The i.d. of the columns is a most important parameter in this respect.  相似文献   

3.
Preparation of organic polymer monolithic columns in fused silica capillaries was aimed at fast gradient separation of proteins. For this purpose, polymerization in situ procedure was optimized, using ethylene dimetacrylate and butyl metacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in presence of non-aqueous porogen solvent mixtures composed of 1-propanol and 1,4-butanediol. The separation of proteins in totally monolithic capillary columns was compared with the chromatography on a new type of "hybrid interparticle monolithic" capillary columns, prepared by in situ polymerization in capillary packed with superficially porous spherical beds, 37-50 microm. The "hybrid" columns showed excellent stability and improved hydrodynamic flow properties with respect to the "totally" monolithic capillary columns. The separation selectivity is similar in the two types of columns. The nature of the superficially porous layer (bare silica or bonded C18 ligands) affects the separation selectivity less significantly than the porosity (density) of the monolithic moiety in the interparticle space, controlled by the composition of the polymerization mixture. The retention behaviour of proteins on all prepared columns is consistent with the reversed-phase gradient elution theory.  相似文献   

4.
Yu C  Svec F  Fréchet JM 《Electrophoresis》2000,21(1):120-127
Photoinitiated free radical polymerization has been used for the preparation of porous polymer monoliths within UV transparent fused silica capillaries and quartz tubes. These formats were used as models for the preparation of the separation media within channels of microfabricated devices. A mixture of ethylene dimethacrylate, butyl methacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid was polymerized in the presence of a porogenic solvent consisting of 1-propanol, 1,4-butanediol, and water at room temperature under UV irradiation. Modification of the porogen composition enables the tailoring of pore size within the broad range from ca. 100 to 4000 nm. Scanning electron micrographs confirmed the homogeneity of the porous structure of the materials prepared, even in a quartz tube with a diameter as large as 4 mm. Separation properties of the resulting capillary columns were tested in capillary electrochromatography (CEC) mode using a mixture of thiourea and eight aromatic compounds. Plate number as high as 210 000 plates/m were found for a capillary column with optimized porous properties. The monolithic columns were also able to separate mixtures of peptides.  相似文献   

5.
An investigation into the preparation of monolithic separation media utilising a cyanine dye sensitiser/triphenylbutylborate/N-methoxy-4-phenylpyridinium tetrafluoroborate initiating system activated by 660 nm light emitting diodes is reported. The work demonstrates multiple uses of red-light initiated polymerisation in the preparation of monolithic stationary phases within polyimide and polyimide coated channels and the modification of monolithic materials with molecules which absorb strongly in the UV region. This initiator complex was used to synthesise poly(butyl methacrylate-co-ethylene dimethacrylate) and poly(methyl methacrylate-co-ethylene dimethacrylate) monolithic stationary phases in polyimide coated fused silica capillaries of varying internal diameters, as well as within polyimide micro-fluidic chips. The repeatability of the preparation procedure and resultant monolithic structure was demonstrated with a batch of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths in 100 μm i.d. polyimide coated fused silica capillary, which were applied to the separation of a model protein mixture (ribonuclease A, cytochrome C, myoglobin and ovalbumin). Taking an average from 12 chromatograms originating from each batch, the maximum relative standard deviation of the retention factor (k) for the protein separations was recorded as 0.53%, the maximum variance for the selectivity factor (α) was 0.40% while the maximum relative standard deviation in peak resolution was 8.72%. All maxima were recorded for the Ribonuclease A/Cytochrome C peaks. Scanning electron microscopy confirmed the success of experiments in which poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths were prepared using the same initiation approach in capillary and micro-fluidic chips, respectively. The initiating system was also applied to the photo-initiated grafting of a chromophoric monomer onto poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths within poly(tetrafluoroethylene) coated fused silica capillaries.  相似文献   

6.
A generalized preparation procedure of open tubular (OT) molecule imprinted polymer (MIP) columns is proposed for a number of templates with acidic functionality such as profen drugs and others. The template (S‐enantiomer) was mixed with methacrylic acid, ethylene glycol dimethacrylate and 4‐styrenesulfonic acid, dissolved in a porogen mixture of ACN/2‐propanol (9/1), and incubated in a pretreated and silanized fused silica capillary by the thermal non‐covalent polymerization procedure. The whole preparation procedure was exactly the same for all the MIP capillaries except for the selection of template. Nevertheless, the morphologies of the MIP layers were markedly variant depending upon the choice of template. The separation efficiency of each OT‐MIP column for chiral separation of R‐ and S‐enantiomers was examined and tuned to obtain the best separation efficiency by changing the chromatographic parameters such as eluent composition and pH. Different optimized conditions were obtained for different OT‐MIP columns. Nevertheless, a unified eluent could be used to obtain still quite satisfactory results. Non‐chiral separation of the MIP columns were also examined in the unified eluent with two sets of test mixtures, that is, a mixture of alkylbenzenes and a mixture of small polar solutes. The chiral and non‐chiral separation of this study resulted in very good separation efficiencies. This work is the very first study for the generalization of preparation of OT‐MIP columns for a number of templates.  相似文献   

7.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

8.
In this work, an investigation of new organosilicon hydride reagents with phenyl functional groups for deactivation and surface modification of fused silica capillary columns is described. Different reagents were tested for their ability to deactivate the fused silica surface, and actual critical surface tension measurements were made using the capillary rise method. The deactivation procedure required lower optimum temperatures than conventional methods. Deactivated capillaries and coated capillary columns were prepared and tested for reproducibility, efficiency, and surface inertness towards basic and acidic compounds at the low nanogram level.  相似文献   

9.
Hydrophobic organo-silane based monolithic capillary columns were prepared by thermally initiated free radical polymerisation within the confines of 200 microm i.d. fused silica capillaries. A novel crosslinker, namely bis(p-vinylbenzyl)dimethylsilane (BVBDMS), was copolymerised with p-methylstyrene (MS) in the presence of 2-propanol and toluene, using alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Monolithic capillary columns, differing in the total monomer, microporogen content and microporogen nature were fabricated and the chromatographic efficiency of each monolith, regarding the separation of proteins, peptides and oligonucleotides, was evaluated and compared. Changes in monolith morphology were monitored by scanning electron microscopy (SEM). Porosity and specific surface areas of the supports were studied by means of mercury intrusion porosimetry and BET measurements, respectively. Pressure drop vs. flow rate measurements proved the prepared poly(p-methylstyrene-co-bis(p-vinylbenzyl)dimethylsilane) (MS/BVBDMS) monoliths to be mechanically stable and swelling propensity (SP) factors of 0.78-1.10 indicate high crosslinking homogeneity.  相似文献   

10.
The effect of different parameters controlling the characteristics of linear polyacrylamide coatings deposited on the inner wall of fused-silica capillaries and their influence on capillary electrophoresis (CE) performance of these coated columns is investigated. To carry out this study, a reproducible procedure to obtain capillaries with similar extent of modification of the surface silanols with 7-oct-1-enyltrimethoxisilane was first approached. Next the polymer attachment to the silica wall, via covalent linkage to the silyl reagent grafted onto the silica, was investigated. In this way, by using columns with a similar silylation extent, differences in CE performance observed among capillaries coated under diverse conditions could be assigned to the characteristics of the polyacrylamide layer. It is demonstrated that the characteristics and reproducibility of these polymeric coatings depend on the adequate control of both the temperature of polymerization and the degassing of the polymerizing dissolutions used. More interestingly, it is also demonstrated that the quantities of monomer (acrylamide), initiator (ammonium persulfate) and activator (N,N,N′,N′-tetramethylethylenediamine), and the ratio among them used in the preparation of the coating polymer have a large influence on the performance of CE columns. The optimum conditions for preparing the polyacrylamide coatings are discussed. The applicability of these linear polyacrylamide-coated capillaries to the separation of basic and acidic proteins in free zone CE is demonstrated. Besides, the use of these coated columns in capillary gel electrophoresis for the separation of DNA fragments is shown.  相似文献   

11.
The entrapment of silica-based microspheres, commonly used as stationary phases in chromatography, with an organic porous polymer based on poly(butyl acrylate-co-1,3-butanediol diacrylate) was explored. The spheres were immobilized by photopolymerization leading to entrapped beds within 75 microm i.d. fused silica capillaries, and were mechanically stable, resisting pressure drops of over 5600 psi (38.6 MPa) for only 1 cm of material. The morphology of the polymer formation around the spheres was investigated by SEM and corroborated with back pressure measurements, which indicated that the spheres were held together by encapsulating polymer. The entrapped material was extruded from the capillary in some cases to facilitate imaging. The entrapment conditions were explored, varying the polarity of the sphere surface, the solvent, and the monomers, revealing that polymer formation is based on partitioning of the monomers between the surface and solvent. The resulting polymer morphology is discussed with respect to the effects of confinement, supported by experiments with varying microsphere diameters. The columns described here have favourable properties for use in capillary chromatography and supported catalysis among other applications, and is suitable for lab-on-a-chip devices.  相似文献   

12.
Organic polymer monolithic capillary columns were prepared in fused-silica capillaries by radical co-polymerization of ethylene dimethacrylate and butyl methacrylate monomers with azobisisobutyronitrile as initiator of the polymerization reaction in the presence of various amounts of porogenic solvent mixtures and different concentration ratios of monomers and 1-propanol, 1,4-butanediol, and water. The chromatographic properties of the organic polymer monolithic columns were compared with those of commercial silica-based particulate and monolithic capillary and analytical HPLC columns. The tests included the determination of H-u curves, column permeabilities, pore distribution by inversed-SEC measurements, methylene and polar selectivities, and polar interactions with naphthalenesulphonic acid test samples. Organic polymer monolithic capillary columns show similar retention behaviour to chemically bonded alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have lower methylene selectivities and do not show polar interactions with sulphonic acids. The commercial capillary and analytical silica gel-based monolithic columns showed similar selectivities and provided symmetrical peaks, indicating no significant surface heterogeneities. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra-column contributions. With 0.3 mm ID capillary columns, corrections for extra-column volume contributions are sufficient, but to obtain true information on the efficiency of 0.1 mm ID capillary columns, the experimental bandwidths should be corrected for extra-column contributions to peak broadening.  相似文献   

13.
Five commercial varieties of uncoated fused silica capillary tubing used in high resolution gas chromatography were subjected to cobalt-60 gamma radiation. The advantages and superior performance of fused silica open tubular columns coated with OV-1 and subsequently immobilized or crosslinked in situ by radiation is reported in a previous paper in this Journal; however, in this investigation a loss in flexibility of irradiated capillaries was also noted. Quantitative measurements on flexibility were performed on specimens of irradiated fused silica capillaries, indicating that changes do indeed occur upon irradiation. Scanning electron micrographs also illustrate slight deterioration of the outer protective polyimide coating. Most surprisingly, it was also established that a variation does exist in the flexibility of the commercially available raw material studied.  相似文献   

14.
Simutaneous analysis of seven commonly used herbicides, 2,4-D methyl ester, 2,4-D methyl ester, 2,4,5-T methyl ester, silvex methyl ester, ramrod, CIPC and DEF, by gas-liquid chromatography with an electron capture detector was attempted. Two packed columns (which are generally used for the analysis of chlorinated pesticides) and two chemically bonded fused silica capillary columns were used for the analysis. When the packed columns were used, ramrod always interfered with the analysis of 2,4-D methyl ester and/or silvex methyl ester. Complete separation with reasonable analysis time can be achieved using one of the chemically bonded fused silica capillary columns.  相似文献   

15.
This paper reports on a new strategy for coating fused silica capillaries based on the ionic adsorption of acid treated single-walled carbon nanotubes (SWCNTs) on a poly(diallydimethylammonium chloride)-modified fused silica surface. The coated capillaries were used to demonstrate their performance for baseline separation of a mixture of seven nitrogen-containing aromatic compounds compared to capillary zone electrophoresis. This combined layer formed a coating material that could be useful for improvement of the selectivity of the solutes in an electrical field. We reasoned that the interaction of the solutes and the modified capillary wall occurred mainly via ionic interactions with the charged moieties of CNTs. The single-walled CNT modified capillaries were very stable and could be used for over 200 repeated analyses without compromising its analytical performance.  相似文献   

16.
The novel enantiomeric separation of acidic and neutral compounds by capillary electrochromatography with β‐cyclodextrin‐bonded positively charged polyacrylamide gels was examined. The columns used are capillaries filled with a positively charged polyacrylamide gel, a so‐called monolithic stationary phase, to which allyl carbamoylated β‐CD derivatives covalently bind. The capillary wall was activated first by bifunctional reagent to make the resulting gel bind covalently inside the fused‐silica tubing. Enantiomeric separations of sixteen acidic and two neutral compounds were achieved using the above‐mentioned columns and 200 mmol dm–3 Tris–300 mmol dm–3 boric acid buffer (pH 8.1) as a mobile phase. High efficiencies of up to 150 000 plates m–1 were obtained for dansyl‐DL‐amino acids. The within‐run and between‐run reproducibilities of retention time and separation factor were examined for three dansyl‐DL‐amino acids and warfarin. The relative standard deviations of the within‐run and between‐run reproducibilities of retention time were less than 1.2 and 1.3% over the six injections, respectively. Those of the separation factor were less than 0.3 and 0.2%, respectively. The gel‐filled capillaries were stable for at least four months with intermittent use.  相似文献   

17.
Polymeric ion-exchange monoliths typically exhibit low capacities due to the limited surface area on the globules of the monoliths. The ion-exchange binding of protonated weakly basic analytes on deprotonated carboxylate sites on methacrylate polymer monoliths has been increased by templating the monoliths with silica nanoparticles. The templating method is achieved by adding the nanoparticles as a suspension to the polymerisation mixture. After polymerisation, the nanoparticles are removed by washing the monolith with strong base. Monolithic columns prepared using this procedure have exhibited a 33-fold increase in ion-exchange capacity when compared to untemplated monoliths prepared and treated under similar conditions. The templating procedure does not alter the macroporous properties of the polymer monolith, confirmed through scanning electron microscopy and BET surface area analysis, but provides increased capacity predominantly through the re-orientation of more carboxylic acid groups. The resulting increase in ion-exchange capacity has proven to be useful for the preconcentration and separation of neurotransmitters by in-line solid-phase extraction–capillary electrophoresis. The increased capacity of the templated monolith allowed the injection time to be increased 10 times over that of an untemplated monolith, allowing 10 times more sample to be injected with the efficiencies and recoveries remaining unaffected. The enhancement in sensitivity for the test mixture of neurotransmitter (dopamine, norepinephrine and metanephrine) ranged 1500–1900 compared to a normal hydrodynamic injection in capillary electrophoresis. Efficiencies obtained for the neurotransmitters were 100 000–260 000 plates, typical of those obtained in capillary zone electrophoresis. The applicability of the increased capacity silica nano-templated polymer monolith was demonstrated by analysing trace levels of caffeine in biological, food and environmental samples.  相似文献   

18.
The purpose of this report is to introduce a new method for use in coating polymeric stationary phase films on the inside wall of small bore diameter fused silica capillary tubing. This technique is being developed for use in fabricating capillary columns for open tubular liquid chromatography.  相似文献   

19.
The main factors affecting the mesopore porosity of methacrylate-ester based monolithic columns were investigated. We prepared 40 monolithic capillary columns with porosity controlled by varying the proportions of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) monomers and of 1,4-butanediol (BUT) and 1-propanol (PROP) as the porogen solvent in the polymerisation mixtures by thermally initiated in situ polymerisation in fused-silica capillaries. Using mixture design software, we systematically varied the composition of the polymerisation mixtures to find significant factors affecting mesopore formation. Multivariate analysis of the experimental data obtained for the fabricated columns yielded a model for prediction of the mesopore porosity in monolithic beds as a function of the composition of the polymerisation mixture used to prepare polymethacrylate monolithic capillary columns. The mean absolute deviation of predicted porosities is 0.029 for most of the columns, with only eight columns showing deviations exceeding 0.050. The main factor affecting the mesopore porosity proved to be the combination of the concentration of hydrophobic monomer (BMA) and the concentration of the less-polar solvent, 1-propanol, in the porogen mixture. The proportion of mesopores in the monolithic capillary columns increases with increasing concentration of 1-propanol and with decreasing concentration ratios of the cross-linker (EDMA) to monomer (BMA) and of BUT to PROP porogenic solvents.  相似文献   

20.
Monolithic capillary columns were prepared via ring-opening metathesis polymerization (ROMP) using norborn-2-ene (NBE) and 1, 4, 4a, 5, 8, 8a-hexahydro-1, 4, 5, 8-exo,endo-dimethanonaphthalene (DMN-H6) as monomers. The monolithic polymer was copolymerized with Grubbs-type initiator RuCl(2)(PCy(3))(2)(CHPh) and a suitable porogenic system within the confines of fused silica capillaries of different inner diameter (I.D.). The first part of the study focused on batch-to-batch reproducibility of ROMP-derived capillary monoliths. Capillary monoliths of 200 microm I.D. showed good reproducibility in terms of retention times, with relative standard deviations (RSD) of 1.9% for proteins and 2.2% for peptides. However, the separately synthesized capillary monoliths revealed pronounced variation in back pressure with RSD values of up to 31%. These variations were considerably reduced by cooling of the capillaries during polymerization. Using this optimized preparation procedure capillary monoliths of 100 and 50 microm I.D. were synthesized and the effects of scaling down the column I.D. on the morphology and on the reproducibility of the polymerization process were investigated. In the second part, the applicability of ROMP-derived capillary monoliths to a separation problem common in medical research was assessed. A 200 microm I.D. monolithic column demonstrated excellent separation behavior for insulin and various insulin analogs, showing equivalent separation performance to Vydac C4 and Zorbax C3-based stationary phases. Moreover, the high permeability of monoliths enabled chromatographic separations at higher flow rates, which shortened analysis time to about one third. For the analysis of insulin in human biofluid samples, enhanced sensitivity was achieved by using a 50 microm I.D. ROMP-derived monolith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号