首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrically contacted glucose dehydrogenase (GDH) enzyme electrode is fabricated by the reconstitution of the apo-GDH on pyrroloquinoline quinone (PQQ)-functionalized Au nanoparticles (Au-NPs), 1.4 nm, associated with a Au electrode. The Au-NPs functionalized with a single amine group were attached to the Au surface by 1,4-benzenedithiol bridges, and PQQ was covalently linked to the Au-NPs. The apo-GDH was then reconstituted on the PQQ cofactor sites. The surface coverage of GDH corresponded to 1.4 x 10(-12) mol cm(-2). The reconstituted enzyme revealed direct electrical contact with the electrode surface, and the bioelectrocatalytic oxidation of glucose occurred with a turnover number of 11,800 s(-1). In contrast, a system that included the covalent attachment of GDH to the PQQ-Au-NPs monolayer in a random, nonaligned, configuration revealed lack of electrical communication between the enzyme and the electrode, albeit the enzyme existed in a bioactive structure. The bioelectrocatalytic function of the later system was, however, activated by the diffusional electron mediator 2,6-dichlorophenol-indophenol. The results imply that the alignment of GDH on a Au-NP through the reconstitution process leads to an electrically contacted enzyme-electrode, where the Au-NP acts as a charge-transfer mediator.  相似文献   

2.
This experimental study explores the capture and manipulation of micrometer-scale particles by single surface-immobilized nanoparticles. The nanoparticles, approximately 10 nm in diameter, are cationic and therefore attract the micrometer-scale silica particles in an analyte suspension. The supporting surface on which the nanoparticles reside is negative (also silica) and repulsive toward approaching microparticles. In the limit where there are as few as 9 nanoparticles per square micrometer of collector, it becomes possible to capture and hold micrometer-scale silica particles with single nanoparticles. The strong nanoparticle-microparticle attractions, their nanometer-scale protrusion forward of the supporting surface, and their controlled density on the supporting surface facilitate microparticle-surface contact occurring through a single nanoelement. This behavior differs from most particle-particle, cell-cell, or particle (or cell)-surface interactions that involve multiple ligand-receptor bonds or much larger contact areas. Despite the limited contact of microparticles with surface-immobilized nanoparticles, microparticles resist shear forces of 9 pN or more but can be released through an increase in the ionic strength. The ability of nanoparticles to reversibly trap and hold much larger targets has implications in materials self-assembly, cell capture, and sorting applications, whereas the single point of contact affords precision in particle manipulation.  相似文献   

3.
Lu YL  Cheng CM  LeDuc PR  Ho MS 《Electrophoresis》2008,29(15):3123-3127
Creating a biocompatible carbon-nanotube polymer scaffold is an area that has a number of potential applications. Herein, a dielectrophoretic approach was pursued to integrate carbon nanotubes into a polymeric material for fabricating a nanoscale composite scaffold with increased and controllable mechanical strength. The adhesion force, which combines the surface energy of the sample and the interfacial energy between the tip and sample, was estimated to be 55.39 +/- 6.72 nN away from the center of the protrusions at a distance of 0.5 microm while being 24.01 +/- 4.45 nN at the center. The adhesion force for the center of the cavities was 42.47 +/- 6.91 and 88.21 +/- 15.05 nN at 0.5 microm away from the center. NIH 3T3 fibroblast cells were then utilized to test the cellular biocompatibility of this multiwalled carbon nanotubes (MWCNTs) film. Cells were cultured on the surface and then their attachment, spreading, and proliferation behaviors were observed. This nanotube-polymer scaffolding approach has a wide range of potential applications including in complex device fabrication as well as in developing biomimetic and tissue engineering scaffolds, and artificial organs.  相似文献   

4.
The integration of molecular structures into microscopic electrode arrays is achieved by dielectrophoresis of gold nanoparticles in electrode gaps. Using microelectrodes realized by photolithography, we demonstrate here the generation of pearl chain arrangements of nanoparticles in structures accessible for standard technologies. To preserve the individual particle structures in the final nanowire arrangement, various strategies were employed. An electrical characterization of the pearl chains yielded an Ohmic behavior. The effect of increased current on these structures is studied at the ultramicroscopic level.  相似文献   

5.
We present a novel approach to the in situ deposition of size-controlled platinum nanoparticles on the exterior walls of carbon nanotubes (CNTs). The reduction of metal ions in ethylene glycol (EG), by the addition of a salt such as sodium dodecyl sulfate (SDS), p-CH3C6H4SO3Na, LiCF3SO3, or LiClO4, results in high dispersions and high loadings of platinum nanoparticles on CNTs without aggregation. We have performed controlled experiments to elucidate the mechanism. By exploiting the salt effect, our method effectively depresses homogeneous nucleation, leading to selective heterogeneous metal nucleation and growth, even on unmodified CNTs. In the 2.3-9.6 nm size range, the size of platinum nanoparticles, at 50% loading, can be controlled by changing the concentration of metal ions, the reaction temperature, the reducing reagent or the means by which reactive solutions are added. Our method provides a flexible route towards the preparation of novel one-dimensional hybrid materials, for which a number of promising applications in a variety of fields can be envisioned.  相似文献   

6.
Vertically-aligned diameter-controlled carbon nanotubes (CNTs) are synthesised by the plasma enhanced chemical vapour deposition (PECVD) method using multi-layers of self-assembled catalytic ligand-coated iron oxide nanoparticles. We find that the mono-dispersed nanoparticles play a vital role for the production of diameter-controlled CNTs. A new growth model is also proposed based on the experimental results. The present results may make a great contribution to the development and design of mechanical, electronic and biomedical devices, in which diameter-controlled CNTs are utilised.  相似文献   

7.
Huang KS  Lai TH  Lin YC 《Lab on a chip》2006,6(7):954-957
In this paper the manipulation of Ca-alginate microspheres, using a microfluidic chip, for the encapsulation of gold nanoparticles is presented. Our strategy is based on hydrodynamic-focusing on the forming of a series of self-assembling sphere structures, the so-called water-in-oil (w/o) emulsions, in the cross-junction microchannel. These fine emulsions, consisting of aqueous Na-alginates, are then dripped into a solution of 20% calcium salt to accomplish Ca-alginate microspheres in an efficient manner. Experimental data show that microspheres with diameters ranging from 50 microm to 2000 microm with a variation less than 5% were precisely generated. The size and gap of the droplets are tunable by adjusting the relative sheath/sample flow rate ratio. Furthermore, we applied them to encapsulated gold nanoparticles, and this one shot operation performs the 'Lab on a Chip'.  相似文献   

8.
We report a simple and general noncovalent method for attaching ZnO and MgO nanoparticles onto MWNTs using water-in-oil microemulsions, which is important for preserving the mechanical and electrical properties of carbon nanotubes.  相似文献   

9.
Nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles (Ni/N-MWCNT) were prepared by a thermal reduction process starting from urea and Ni(II) salt in an inert atmosphere. The nanocomposite was deposited on a screen printed electrode and characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and thermogravimetric analyses. The performance of the composite was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The numerous active metal sites with fast electron transfer properties result in enhanced electrocatalytic activity towards the individual and simultaneous detection of catechol (CC) and hydroquinone (HQ), best at 0.21 V for CC and 0.11 V for HQ (vs. Ag/AgCl). For both targets the detection limit (S/N of 3) was 9 nM (CC) and 11 nM (HQ), and the Ni/N-MWCNT-electrode showed linear response from 0.1–300 μM CC, and 0.3–300 μM HQ. The electrode is selective over many potentially interfering ions. It was applied to the analysis of spiked water samples and gave satisfactory recoveries. It also is sensitive for CC (5.396 μA·μM?1 cm?2) and HQ (5.1577 μA·μM?1 cm?2), highly active, durable, acceptably repeatable and highly reproducible.
Graphical abstract Voltammetric determination of catechol and hydroquinone using nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles.
  相似文献   

10.
The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystallization. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs. Supported by the National Natural Science Foundation of China (Grant No. 50772031), the Chinese Program for New Century Excellent Talents in University (Grant No. NCET-05-0678), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, Hubei Provincial Department of Education (Grant No. Q200610005), and Hubei Provincial Science & Technology Department (Grant No. 2006ABA020)  相似文献   

11.
Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) and SiC nanoparticles were dispersed in natural rubber (NR) polymer solution and subsequently evaporated the solvent to prepare NR nanocomposites. Using this technique, nanoparticles can be better dispersed in the NR matrix. The influence of nano-fillers on the mechanical properties of the resulting nanocomposites was quantified.Mechanical test results show an increase in the initial modulus with nanoscale reinforcements for up to 50% strain compared to pure NR. The modulus and strength of natural rubber with 1.5% SiC nanoparticles appear to be superior to those of SWNTs with the same filler content. In addition to mechanical testing, these nanocomposites were studied using the SEM and Raman spectroscopy techniques in order to understand the morphology of the resulting system and the load transfer mechanism, respectively. The Raman spectrum of the SWNT/NR system is characterized by a strong band at 1595 cm−1 (G mode—C-C stretching) and other two bands at 1300 cm−1 (D mode-disorder induced) and 2590 cm−1 (D* band). A shift of the 2590 cm−1 Raman band to the lower wavenumber was observed after subjecting SWNT/NR sample to cyclic stress testing. Ageing SWNT/NR specimen in distilled water for 30 days also provided a similar result. The Raman shift in aged samples indicates internal stress transfer from the natural rubber matrix to the SWNTs implying the existence of bonding at the interface.  相似文献   

12.
Three different forms of carbon, i.e., multi-walled carbon nanotubes (CNTs), single-walled CNTs, and soot, were decorated with gold nanoparticles by a new method. In this method C10H8 ions transfer electrons to the CNTs or soot. These electrons on the carbon surface can then reduce Au3+ species to form supported Au nanoparticles with a narrow particle size distribution. Thermogravimetric/differential thermal analyses (TG/DTA), XRD, Raman, and TEM show that naphthalene molecules remain trapped inside the Au nanoparticles and can only be removed by treatment at ca. 300 °C. Remarkable effect of the Au nanoparticles on the oxidation of carbon by O2 is also observed by TG/DTA, i.e., on-set oxidation temperature and activation energy (E a). It is shown that as the Au particle size decreases from 25 to 2 nm a linear decrease of the oxidation temperature is observed. Au particles larger than 25 nm do not produce any significant effect on carbon oxidation. These results are discussed in terms of spillover catalytic effect where Au nanoparticles activate O2 molecules to produce active oxygen species which oxidize the different carbon supports.  相似文献   

13.
We describe a novel tunable approach for the synthesis of carbon nanotube-silica nanobead composites. The control of nanotube morphology and bead size coupled with the versatility of silica chemistry makes these structures an excellent platform for the development of biosensors, or for optical, magnetic and catalytic applications.  相似文献   

14.
The emergence of optofluidics has brought a high degree of tuneability and reconfigurability to optical devices. These possibilities are provided by characteristics of fluids including mobility, wide range of index modulation, and abrupt interfaces that can be easily reshaped. In this work, we created a new class of optofluidic waveguides, in which suspended mesoparticles were employed to greatly enhance the flexibility of the system. We demonstrated tuneable quasi single mode waveguides using spatially controllable mesoparticles in optofluidics. The coupling of waveguiding modes into the assembly of mesoparticles produces strong interactions and resonant conditions, which promote the transitions of the waveguiding modes. The modal response of the system depends on the distribution of packed particles above the polymeric rib waveguide which can be readily controlled under the appropriate combination of dielectrophoresis and hydrodynamic forces.  相似文献   

15.
16.
《Chemical physics letters》2003,367(5-6):747-752
Gold nanoparticles were self-assembled onto the surface of solubilized carbon nanotubes through an interlinker of bi-functionalized molecule (PHT) terminated with pyrenyl unit at one end and thiol group at the other end. While the fluorescence of PHT is quenched moderately by the carbon nanotubes, the fluorescence is almost totally quenched by the further binding of gold nanoparticles. The enhancement of the Raman responses of nanotubes by the gold nanoparticles is also observed. These results imply there are charge transfer interactions between nanotubes and gold nanoparticles.  相似文献   

17.
The CuInS(2) (CIS) nanoparticles were wrapped uniformly throughout the inner and outer walls of TNTs (TNT) by using square wave pulsed-electrodeposition. This structure enables the CuInS(2)-TiO(2) (CIS-TNT) to exhibit p-n junction diode behavior and enhanced photoelectrochemical properties.  相似文献   

18.
The interaction between ozone and silver nanoparticles stabilized with sodium polyphosphate is studied in aqueous solutions. The process of ozone decomposition is established to have a chain character. The oxidation of one silver atom initiates the decomposition of about three ozone molecules. The stability of colloidal silver decreases upon the oxidation, which leads to its partial aggregation.  相似文献   

19.
Singh P  Aubry N 《Electrophoresis》2007,28(4):644-657
In microfluidic devices the fluid can be manipulated either as continuous streams or droplets. The latter is particularly attractive as individual droplets can not only move but also split and fuse, thus offering great flexibility for applications such as laboratory-on-a-chip. We consider the transport of liquid drops immersed in a surrounding liquid by means of the dielectrophoretic force generated by electrodes mounted at the bottom of a microdevice. The direct numerical simulation (DNS) approach is used to study the motion of droplets subjected to both hydrodynamic and electrostatic forces. Our technique is based on a finite element scheme using the fundamental equations of motion for both the droplets and surrounding fluid. The interface is tracked by the level set method and the electrostatic forces are computed using the Maxwell stress tensor. The DNS results show that the droplets move, and deform, under the action of nonuniform electric stresses on their surfaces. The deformation increases as the drop moves closer to the electrodes. The extent to which the isolated drops deform depends on the electric Weber number. When the electric Weber number is small, the drops remain spherical; otherwise, the drops stretch. Two droplets, however, that are sufficiently close to each other, can deform and coalesce, even if the electric Weber number is small. This phenomenon does not rely on the magnitude of the electric stresses generated by the bulk electric field, but instead is due to the attractive electrostatic drop-drop interaction overcoming the surface tension force. Experimental results are also presented and found to be in agreement with the DNS results.  相似文献   

20.
Single-walled carbon nanotubes (SWNTs) are used as supporting materials for palladium (Pd) nanoparticles generated in situ in ionic liquid (IL); Pd nanocatalysts on SWNTs exhibit superior reactivity for hydrogenation of aryl ketones in IL under mild conditions (1 atm of H2 (g) and room temperature) and can be reused above 10 times without any loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号