首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two colorimetric and turn-on fluorescent probes N-[2-(2-hydroxy)-ethoxy] ethyl-4-azido-1,8-naphthalimide (SS1) and N-butyl-4-azido-1,8-naphthalimide (SS2) for selective recognition of H2S were designed and synthesized. The probes were constructed by incorporating an azido group into the naphthalimide fluorophore as a specifical reaction group for sulfide utilizing its reducing property. Once treated with H2S, the azido groups of the probes were converted to amino groups and the solutions’ color changed from colorless to yellow companied with a strong yellow-green fluorescence. Rapid and sensitive responses of the probes towards H2S were achieved in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB): the reaction was completed within 10 min in CTAB compared to more than 4 h in buffer solution, and the detection limit decreased from 0.5 μM to 20 nM. High selectivity and good competition of both probes towards H2S over other 11 ions and 2 reducing agents were realized in CTAB micelle. An overall linear concentration range of 0.05 μM to 1 mM was achieved with the assistance of differently charged surfactants CTAB and sodium dodecyl sulfate (SDS). The probes were applied to rapidly and sensitively detect H2S levels in fetal bovine serum without any pretreatment of the sample.  相似文献   

2.
In order to evaluate the chemiluminescence (CL) reagents for selective detection of reactive oxygen species (ROS), we comprehensively measured the CL responses of 20 CL reagents (three luminol derivatives, two imidazopyrazinone derivatives, eight lophine derivatives, six acridinium ester derivatives and lucigenin) against six types of ROS (superoxide anion: O2, hydroxyl radical: OH, hydrogen peroxide: H2O2, hypochlorite anion: ClO, singlet oxygen: 1O2, and nitric oxide: NO). As a result of the screening, it was found that nine CL reagents selectively detected O2 while one CL reagent selectively detected OH. However, no CL reagent had selectivity on the detection of H2O2, ClO, 1O2 and NO. Our screening results could help to select the most suitable CL reagent for selective determination of different ROS.As an application study, 4-methoxyphenyl-10-methylacridinium-9-carboxylate (MMAC), one of the acridinium ester derivatives, showed high selectivity on the detection of O2, and thus was applied to the assay of superoxide dismutase (SOD) activity. The dynamic range and detection limit of the developed CL assay were 0.1-10 and 0.06 U mL−1, respectively. Significant correlation (r = 0.997) was observed between the results by the CL assay using MMAC and the spectrophotometric assay using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt.  相似文献   

3.
硼酸及硼酸酯类过氧化氢荧光探针的最新研究进展   总被引:2,自引:0,他引:2  
生物新陈代谢过程中产生的过氧化氢(H2O2)是生命活动所必需的,但是过量过氧化氢的存在可以引发多种疾病,因此对体内过氧化氢的检测具有重要意义.采用荧光探针法,借助激光共聚焦成像技术能够实现对活细胞和组织内的过氧化氢"实时、可见、定量"的检测,为深入阐明过氧化氢在生理和病理过程中所起的作用提供了一个重要手段.本文按荧光探针的结构分类,对近几年来以硼酸及硼酸酯基团作为荧光开关的具有高选择性和灵敏度的过氧化氢荧光探针进行了综述,主要探讨其设计思想、作用机制及应用,为过氧化氢探针的设计提供了新思路.  相似文献   

4.
A pinacol boronate caged NIAD-4 derivative was demonstrated to be a near-infrared fluorescent probe for fast and selective detection of hypochlorite over other ROS species.  相似文献   

5.
《中国化学快报》2021,32(9):2715-2728
With high catalytic activity and stability, nanozymes have huge advantage in generating or eliminating the reactive oxygen species (ROS) due to their intrinsic enzyme-mimicking abilities, therefore attracting wide attention in ROS-related disease therapy. To better design nanozyme-based platforms for ROS-related biological application, we firstly illustrate the catalytic mechanism of different activities, and then introduce different strategies for using nanozymes to augment or reduce ROS level for the applications in cancer therapy, pathogen infection, neurodegeneration, etc. Finally, the challenges and future opportunities are proposed for the development and application of nanozymes.  相似文献   

6.
Fluorescent Red GK, a commercially available coumarin-based dye, was developed as a “turn-off” fluorescent probe for detection of Cu2+ in aqueous solution. It exhibited high selectivity and sensitivity at room temperature. Upon addition of Cu2+, the strong fluorescence of Fluorescent Red GK was severely quenched and its color changed from orange to colorless under illumination with a UV lamp; the color of the solution also changed from pink to colorless. So, it can be used as a specific colorimetric and fluorescent probe for Cu2+ with a detection limit as low as 0.0634?μM.  相似文献   

7.
Singlet oxygen is a unique reactive oxygen species, as its chemical reactivity derives from its characteristic electronically-excited state. The involvement of singlet oxygen in many important atmospheric, physical, chemical, biological, and therapeutic processes has attracted intense research interest in recent years. The detection and the quantification of singlet oxygen are very important for understanding its mechanism of action in various processes.Due to its highly reactive nature, singlet oxygen has very few direct methods of determination. Only molecular phosphorescence at 1270 nm has been utilized. Indirect methods using spectrophotometric, fluorescent or chemiluminescent probes have therefore been extensively studied.This review reflects recent developments in singlet-oxygen detection with molecular spectroscopic methods. We begin with a brief introduction of the basic properties, the production and the applications of singlet oxygen. With this background information, we review the four molecular spectroscopic methods (i.e., emission, spectrophotometry, fluorescence and chemiluminescence). We pay special attention to attractive chemical probes with high selectivity and sensitivity in quantifying singlet oxygen.  相似文献   

8.
《Analytical letters》2012,45(15):2811-2825
Abstract

Simple and rapid chemiluminescence (CL) assays for H2O2, ?OH, ?O2 ? and 1O2 using 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) or 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-α]pyrazin-3-one (CLA) as CL reagents were developed. The means of the intra-assay relative standard deviations of ten replicate measurements of H2O2 (25-120 μM), ?OH generated from Fe(II) ion (2.5-10 μM) in the presence of 980 μM H2O2, ?O2 ? generated from hypoxanthine (HX) (7-50 μM) in the presence of 9 × 10?3 units xanthine oxidase (XO) and 1O2 generated from NaOCl (3-12 mM) in the presence of 97.6 μM H2O2 were found to be 4.0%, 2.8%, 2.4% and 8.7%, respectively. To validate the proposed methods, the scavenging abilities of three standard antioxidative compounds, such as L-ascorbic acid, (±)-α-tocopherol and superoxide dismutase (SOD) were examined for four active oxygen species and compared with those by anelectron spin resonance (ESR) spin-trapping method. In addition, the CL methods were also applied to establish the relationships between the decrease of CL intensity and the structures as well as redox characters of syringic acid, 3-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid. From the obtained results, the scavenging effects to H2O2, ?OH, ?O2 ? and 1O2 of other dihydroxybenzoic acids were also evaluated.  相似文献   

9.
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H2SO4, the experimental data of T 0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.  相似文献   

10.
The supported nano-TiO2 electrode was prepared by sol–gel and hydrothermal method, and the photoelectrocatalytic degradation of 4-chlorophenol (4-CP) under UV irradiation has been investigated to reveal the roles of hydroxyl radicals and dissolved oxygen species for TiO2-assisted photocatalytic reactions. The degradation kinetics, the formation and decay of intermediates, the isotopic tracer experiments with H2O18, the removal yield of total organic carbon and the formation of active radical species in the presence of oxygen or not were examined by HPLC, GC–MS, TOC and spin-trap ESR spectrometry. It was found that most of OH radicals in the primary hydroxylated intermediates derived from the oxidation of adsorbed H2O or HO by photo-holes in the electrochemically assisted TiO2 photocatalytic system. It also indicates that the enhancement in the separation efficiency of photogenerated charges by applying a positive bias (+0.5 V vs SCE) has little role in the following decomposition and mineralization of these hydroxylated intermediates in the absence of oxygen. According to above experimental results, the pathway of 4-CP photocatalytic degradation was deduced initially. Due to the combined effect of OH radicals and dissolved oxygen species, the hydroxylated 4-chlorphenol, via cis, cis-3-chloromuconic acid, was decomposed into low molecular weight acid and CO2.  相似文献   

11.
采用5-((4-吡啶基)甲氧基)-异烟酸(H2PLIA)、1,3,5-三(1-咪唑基)-苯(TIB)合成了金属有机骨架[Cd(PLIA)(TIB)]n (MOF-1),MOF-1是具有理想一维孔道的二维结构化合物,其一维孔道由柔性三角形PLIA2-配体和刚性三角形TIB配体间隔形成。利用MOF-1 易掺杂的优势,采用后修饰合成策略制备了Tb@MOF-1。对MOF-1 和Tb@MOF-1 进行了基本表征及荧光探针性能研究。2种探针材料具有相同的结构。MOF-1和Tb@MOF-1分别对水溶液中的Cr2O72-和S2O82-离子具有较强荧光识别能力,均有响应时间快,稳定性、选择性、灵敏度高的特点。研究了MOF-1和Tb@MOF-1对Cr2O72-和S2O82-的荧光识别机理,其不同可能与Tb3+离子掺杂有关。  相似文献   

12.
Hydrogen peroxide (H2O2) in exhaled breath condensate (EBC) has been proposed as a marker for oxidative stress in the airways. The aim of the present study was to evaluate the measurement of H2O2 in EBC with or without use of a nose clip, and the influence of mouth rinsing, sampling time and storage.An elevated H2O2 level was seen during nasal breathing compared to mouth breathing with nose clip (3.4 pmol/s vs. 2.1 pmol/s, p = 0.02). Breathing through the mouth, using a nose clip, was therefore practiced in all experiments. The H2O2 levels were increased when mouth rinsing was performed using an acid buffer (1.4 pmol/s vs. 1.9 pmol/s, p = 0.03). 15 min sampling time decreased the H2O2 output by almost 50% compared with 2 min sampling time (1.2 vs. 0.6 pmol/s, p = 0.03). When samples were left unattended for 15 min no change in H2O2 concentration in the EBC was seen.We found no significant differences in H2O2 levels between samples stored for 4 weeks at − 80 °C and samples analysed directly; however, a significant decrease in the levels was seen for samples stored for 4 weeks at − 20 °C.In conclusion, the method of EBC collection and storage plays an important role in reducing variability within and between individuals.  相似文献   

13.
采用5-((4-吡啶基)甲氧基)-异烟酸(H2PLIA)、1,3,5-三(1-咪唑基)-苯(TIB)合成了金属有机骨架[Cd (PLIA)(TIB)]n (MOF-1)。MOF-1是具有理想一维孔道的二维结构化合物,其一维孔道由柔性三角形PLIA2-配体和刚性三角形TIB配体间隔形成。利用MOF-1易掺杂的优势,采用后修饰合成策略制备了Tb@MOF-1。对MOF-1和Tb@MOF-1进行了基本表征及荧光探针性能研究。2种探针材料具有相同的结构。MOF-1和Tb@MOF-1分别对水溶液中的Cr2O72-和S2O82-离子具有较强荧光识别能力,均有响应时间快,稳定性、选择性、灵敏度高的特点。研究了MOF-1和Tb@MOF-1对Cr2O72-和S2O82-的荧光识别机理,其不同可能与Tb3+离子掺杂有关。  相似文献   

14.
Jipei Yuan  Jianyuan Yin 《Talanta》2009,77(5):1858-4893
A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 μM; two detection ranges of glucose from 1.0 μM to 0.5 mM and from 1.0 mM to 20 mM, respectively were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.  相似文献   

15.
Based on a boron dipyrromethene (BODIPY) derivative containing an N, O and S tridentate ligand, a Cu2+ fluorescent probe BTCu was developed. The detection mechanism was verified as Cu2+-promoted oxidative dehydrogenation of an amine moiety, leading to a formation of a fluorescent Cu+-Schiff base complex. Free BTCu exhibited a maximum absorption wavelength at 496 nm, and a very weak maximum emission at 511 nm. Upon addition of various metals ions, it showed large fluorescence enhancement toward Cu2+ (417-fold in MeCN and 103-fold in MeCN/HEPES solution, respectively) with high selectivity. The detection limits are as low as 1.74 × 10−8 M and 4.96 × 10−8 M in the two different solutions, respectively. And BTCu could work in a wide pH range with an extraordinary low pKa of 1.21 ± 0.06. Using fluorescence microscopy, the probe was shown to be capable of penetrating into living cells and imaging intracellular Cu2+ changes.  相似文献   

16.
17.
Polyethylene terephthalate (PET) was aminolyzed with 1,6‐diaminohexane (DAH) and then sialic acid (NANA) was immobilized via amidation onto the surface. The surface concentration of NANA was determined by 2‐thiobarbituric acid (TBA) test. The hemocompatibility of the resulting PET fabrics was evaluated based on complete blood count (CBC), coagulating times, and protein adsorption. The ability to remove lipopolysaccharide (LPS) was also determined. In addition, the effect of contacting NANA‐immobilizing PET on the suppression of reactive oxygen species (ROS) production was measured by the chemiluminescence (CL) method. The results show that by immobilizing NANA onto PET, the adhesion of platelet (PLt) was reduced, and oxidative stress was suppressed. The level of LPS was also greatly reduced. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Simon FX  Penru Y  Guastalli AR  Llorens J  Baig S 《Talanta》2011,85(1):527-532
Biochemical oxygen demand (BOD) is a useful parameter for assessing the biodegradability of dissolved organic matter in water. At the same time, this parameter is used to evaluate the efficiency with which certain processes remove biodegradable natural organic matter (NOM). However, the values of BOD in seawater are very low (around 2 mg O2 L−1) and the methods used for its analysis are poorly developed. The increasing attention given to seawater desalination in the Mediterranean environment, and related phenomena such as reverse osmosis membrane biofouling, have stimulated interest in seawater BOD close to the Spanish coast. In this study the BOD analysis protocol was refined by introduction of a new step in which a critical quantity of autochthonous microorganisms, measured as adenosine triphosphate, is added. For the samples analyzed, this improvement allowed us to obtain reliable and replicable BOD measurements, standardized with solutions of glucose-glutamic acid and acetate. After 7 days of analysis duration, more than 80% of ultimate BOD is achieved, which in the case of easily biodegradable compounds represents nearly a 60% of the theoretical oxygen demand. BOD7 obtained from the Mediterranean Sea found to be 2.0 ± 0.3 mg O2 L−1 but this value decreased with seawater storage time due to the rapid consumption of labile compounds. No significant differences were found between two samples points located on the Spanish coast, since their organic matter content was similar. Finally, the determination of seawater BOD without the use of inoculum may lead to an underestimation of BOD.  相似文献   

19.
Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)22− and Cr(OH)4CO33−] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3)22−+2H+} and {Cr(OH)3(am) + OH+CO32− Cr(OH)4CO33−}] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.  相似文献   

20.
Four different metal oxide nanoparticles, copper oxide (CuO), aluminum oxide (Al2O3), nickel oxide (NiO), and titanium dioxide (TiO2), were added to poly (2,5-dimethyl aniline) (P25DMA) during synthesis to create different polymer nanocomposites. These polymer nanocomposites were evaluated as potential sensing materials for six different gas analytes (acetaldehyde, acetone, benzene, ethanol, formaldehyde, and methanol). It was found that CuO did not incorporate into the P25DMA and only a small percentage of Al2O3 was incorporated. However, both NiO and TiO2 were incorporated into the P25DMA at the same concentration as during the synthesis step. Overall, the type of metal oxide significantly affected the morphology of the sensing material and the amount of each analyte sorbed. For example, P25DMA doped with 5 wt% Al2O3 had high selectivity towards ethanol, whereas P25DMA doped with 20 wt% TiO2 sorbed the most ethanol. However, P25DMA doped with 20 wt% TiO2 also sorbed a high amount of formaldehyde, making P25DMA doped with 20 wt% TiO2 less selective than P25DMA doped with 5 wt% Al2O3 towards ethanol with respect to formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号