首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《物理学报》2005,54(1):317-322
用全势缀加平面波加局域轨道(APW+lo)的方法计算了六方GaN及其非极性(1010)表面的原子及电子结构.计算出的六方GaN晶体结构参数晶格常数和体积弹性模量与实验值符合得很好.用平板超原胞模型来计算GaN(1010)表面的原子与电子结构,结果表明表面顶层原子发生键长收缩并扭转的弛豫特性.表面阳离子向体内移动,趋向于sp2平面构形;而表面阴离子向体外移动,趋向于锥形的p3构形.弛豫后,表面实现由半金属性向半导体性的转变.并且,表面电荷发生大的转移,参与表面键的重新杂化,使得表面原子的离子性减弱共价性增强,认为这就是表面原子键收缩并旋转的原因.  相似文献   

2.
GaN(1010)表面结构的第一性原理计算   总被引:1,自引:0,他引:1       下载免费PDF全文
用全势缀加平面波加局域轨道(APW+lo)的方法计算了六方GaN及其非极性(1010)表面的原子及电子结构.计算出的六方GaN晶体结构参数:晶格常数和体积弹性模量与实验值符合得很好.用平板超原胞模型来计算GaN(1010)表面的原子与电子结构,结果表明表面顶层原子发生键长收缩并扭转的弛豫特性.表面阳离子向体内移动,趋向于sp2平面构形;而表面阴离子向体外移动,趋向于锥形的p3构形.弛豫后,表面实现由半金属性向半导体性的转变.并且,表面电荷发生大的转移,参与表面键的重新杂化,使得表面原子的离子性减弱共价性增强,认为这就是表面原子键收缩并旋转的原因.  相似文献   

3.
谢长坤  徐彭寿  徐法强  潘海斌 《物理学报》2002,51(12):2804-2811
用全势缀加平面波方法(FPLAPW)计算了αSiC及其非极性(1010)表面的原子与电子结构.计算出的αSiC晶体结构参量:晶格常量和体积弹性模量与实验值符合得很好.用平板超原胞模型来计算αSiC(1010)表面的原子与电子结构,结果表明表面顶层原子发生键长收缩并扭转的弛豫特性,表面阳离子Si,C向体内方向发生不同程度的位移.表面重构的机理为Si,C原子由原来的sp3杂化方式退化为sp2杂化,与其三配位异种原子近似以平面构型成键.另外,表面弛豫实现表面由半金属性至半导体性的转变  相似文献   

4.
谢长坤  徐彭寿  徐法强  潘海斌 《物理学报》2002,51(12):2804-2811
用全势缀加平面波方法(FPLAPW)计算了α-SiC及其非极性(101^-0)表面的原子与电子结构。计算出的α-SiC晶体结构:晶格常量和体积弹性模与实验值符合得很好。用平板超原胞模型来计算α-SiC(101^-0)表面的原子与电子结构,结果表明表面顶层原子发生键长收缩并扭转的弛豫特性,表面阳离子Si,C向体内方向发生不同程度的位移。表面重构的机理为Si,C原子由原来的sp^3杂化方式退化为sp^2杂化,与其三配位异种原子近似以平面构型成键。另外,表面弛豫实现表面由半金属性至半导体性的转变。  相似文献   

5.
采用平面波超软赝势方法计算了锐钛矿型TiO2(101)面的表面能和表面原子弛豫结构.首先对TiO2(101)面的6种不同的表面原子终止结构的体系总能量进行了计算,结果表明终止原子为两配位的O原子、次层为五配位的Ti原子的表面结构最为稳定.针对该表面研究了表面能和原子弛豫与模型中原子层数和真空厚度的关系,当原子层数为12层,真空厚度为0.4 nm时,表面能收敛度小于0.01 J/m2.研究发现:表面上两配位的O原子向里移动约0.0012 nm,五配位的Ti原子向里移动约0.0155 nm,弛豫后的Ti-O键长发生了较大变化,核外电荷发生了转移,结构趋于稳定.  相似文献   

6.
戴佳钰  张栋文  袁建民 《物理学报》2006,55(11):6073-6079
基于第一性原理的自洽场密度泛函理论(DFT)和广义梯度近似(GGA),利用缀加平面波加局域轨道(APW+lo)近似方法,建立了五层层晶超原胞模型,模拟了GaAs(110)表面结构和单个Xe原子在其表面的吸附.利用牛顿动力学方法,对GaAs(110)表面原子构形的弛豫和Xe原子在GaAs(110)表面的吸附进行了计算.从三种不同的初始构形出发,即Xe原子分别在Ga原子的顶位,As原子的顶位以及桥位,都发现Xe原子位于桥位时体系能量最低.由此,认为Xe原子在GaAs(110)表面的吸附位置在桥位,并且发现吸附Xe原子后GaAs(110)表面有趋向于理想表面的趋势,表面重构现象趋于消失,表面原子间键长有一定的恢复,这与理论预言相符合. 关键词: 密度泛函理论 表面结构 APW 表面原子吸附  相似文献   

7.
杜玉杰  常本康  王晓晖  张俊举  李飙  付小倩 《物理学报》2012,61(5):57102-057102
采用基于第一性原理的密度泛函理论平面波超软赝势方法计算了 1/4ML Cs原子吸附 (2 × 2) GaN(0001) 表面的吸附能、能带结构、电子态密度、电荷布居数、功函数和光学性质. 计算发现, 1/4ML Cs 原子在 GaN(0001) 表面最稳定吸附位为 N 桥位, 吸附后表面仍呈现为金属导电特性, Cs原子吸附GaN(0001)表面后主要与表面 Ga 原子发生作用, Cs6s 态电子向最表面 Ga 原子转移, 引起表面功函数下降. 研究光学性质发现, Cs 原子吸附 GaN(0001) 表面后, 介电函数虚部、吸收谱、反射谱向低能方向移动.  相似文献   

8.
张开明  叶令 《物理学报》1980,29(6):686-692
本文研究GaAs(110)面旋转弛豫的电子结构,采用一个原子集团来模拟GaAs(110)面,在其内边界上用一些“类Ga”和“类As”原子来钝化伸向体内的悬挂键,以消除由于有限模型而引起的多余边界效应。用EHT方法计算集团的总能量,由能量极小定出GaAs(110)面最稳定的弛豫位置为表面旋转角ω=18°,表面Ga原子向体内下降0.33?,As原子上升0.13?,这与Pandey等人从光电子部分产额谱所得的结果基本一致。本文还计算了理想和弛豫的GaAs(110)面的态密度,发现对于理想的(110)面禁带中确实存在一个空的表面峰。弛豫后,该峰向上移动进入导带,禁带中不再出现表面峰,与实验结果相符。 关键词:  相似文献   

9.
采用平面波超软赝势方法研究了立方相Ag_3PO_4(111)面的表面能和表面原子弛豫结构.首先对Ag_3PO_4(111)面的八种不同原子终止结构的体系总能量进行计算,结果表明B种表面模型被证实为最稳定的(111)面原子几何结构.针对该表面结构,探讨了表面能和原子弛豫与模型中原子层数和真空厚度的关系,当原子层数为24层,真空厚度为0.6 nm时,表面能收敛于1.41 J/m2(LDA-CAPZ)和1.39 J/m2(GGA-PBE).表面原子弛豫后,表面两个三配位的Ag原子均向里移动,超过0.06 nm,而表面次层的O原子则均向外移动约0.0042 nm,导致弛豫后暴露在最表面的是O原子,同时表面原子的核外电子向表面内部发生转移,结构趋于稳定.这些结果为进一步深入研究Ag_3PO_4表面的光催化活性起源提供理论支持.  相似文献   

10.
采用平面波超软赝势方法研究了立方相Ag3PO4(111)面的表面能和表面原子弛豫结构.首先对Ag3PO4(111)面的八种不同原子终止结构的体系总能量进行计算,结果表明B种表面模型被证实为最稳定的(111)面原子几何结构.针对该表面结构,探讨了表面能和原子弛豫与模型中原子层数和真空厚度的关系,当原子层数为24层,真空厚度为0.6 nm时,表面能收敛于1.41 J/m2(LDA-CAPZ)和1.39 J/m2(GGA-PBE).表面原子弛豫后,表面两个三配位的Ag原子均向里移动,超过0.06 nm,而表面次层的O原子则均向外移动约0.0042 nm,导致弛豫后暴露在最表面的是O原子,同时表面原子的核外电子向表面内部发生转移,结构趋于稳定.这些结果为进一步深入研究Ag3PO4表面的光催化活性起源提供理论支持.  相似文献   

11.
用低能电子衍射研究GaAs(110)表面的弛豫   总被引:1,自引:0,他引:1       下载免费PDF全文
蓝田  徐飞岳 《物理学报》1989,38(3):357-365
用低能电子衍射研究了GaAs(110)表面的弛豫。发现当理论与实验之间符合得最好时,得到的结构是,保持表面上As—Ga键长不变用一个27.32°±0.24°的旋转角(ω),使As原子向外移动0.10±0.02?,Ga原子向内移动0.55±0.02?,而从Ga到第二层时空间为d2=1.45±0.01?,从第二层Ga到第三层的空间为d3=2.01±0.01?。对此结构As的背键长lAs=2.43±0.01?(收缩0.56%),而Ga的背键长lGa=2.253±0.004?(收缩8.0%)。 关键词:  相似文献   

12.
采用FLAPW(全势线性缀加平面波)方法研究了α铀(001)面的弛豫和电子结构.结果表明, α铀表层原子向内收缩2. 9%,次表层和第三层原子分别向外膨胀1. 1%和0. 2%,弛豫能主要由表层和次表层原子的弛豫组成.由于短程屏蔽效应,原子间的相互作用主要局限于近邻原子层之间.相对于体相原子,表层原子由于近邻原子数目的减少, 5f电子轨道波函数重叠、杂化几率降低,能带变窄,定域化性质增强.  相似文献   

13.
密度泛函理论计算结果和X射线光电子能谱测量数据之间的一致性证实了碱金属低配位引起局部键弛豫和芯能级偏移,进而决定了材料的表面、尺寸和热性能. 局域光电子能谱分析方法和键弛豫理论可用于计算有关金属表面键合和电子性质的参数,从而进一步研究碱金属中芯-电子结合能偏移. 同时,结合第一性原理,还可以获得碱金属表面低配位原子的键参数和原子内聚能. 此外,尺寸和温度对表面电子结合能的影响可以从原子键弛豫引起的哈密顿量中导出.  相似文献   

14.
用共振电子注入法和第一性原理计算研究了硒(Se)单原子在Si(111)-7×7表面的吸附. 理论结果表明由于不同的电负性,表面Si原子会向吸附的Se原子发生电子转移,从而导致一个0.61 eV的表面偶极子形成. 该表面偶极子改变了Si表面的有效隧道能垒同时导致在样品和扫描电子显微镜针尖之间真空间隙中共振态能级的移动. 并且0.61 eV的表面偶极子会引起共振电子注入偏压向高电位移动0.45 V.  相似文献   

15.
密度泛函理论计算结果和X射线光电子能谱测量数据之间的一致性证实了碱金属低配位引起局部键弛豫和芯能级偏移,进而决定了材料的表面、尺寸和热性能.局域光电子能谱分析方法和键弛豫理论可用于计算有关金属表面键合和电子性质的参数,从而进一步研究碱金属中芯-电子结合能偏移.同时,结合第一性原理,还可以获得碱金属表面低配位原子的键参数和原子内聚能.此外,尺寸和温度对表面电子结合能的影响可以从原子键弛豫引起的哈密顿量中导出.  相似文献   

16.
夏建白 《物理学报》1984,33(2):143-153
本文将赝原子轨道的线性组合方法应用于计算半导体表面电子结构。除了赝势的形状因子以外,不引入任何可调参量。用这方法计算了Si和GaAs(111)理想表面和弛豫表面的电子态和波函数。Si的结果与Appelbaum和Hamann的自洽计算结果在表面能级位置和表面电荷分布两方面都符合得比较好。计算结果表明,当表面Si或Ga原子向内位移时,表面能级向上移动;表面As原子向外位移时,表面能级向下移动。同时,表面态波函数的性质往往也发生较大的变化。 关键词:  相似文献   

17.
基于第一性原理计算,我们系统地呈现了三元合金Co2CrGa(100)表面的原子弛豫、磁性、电子结构以及表面原子极化行为.结果显示,由于Co-Ga和Co-Cr成键的差异,表面的Co和Cr原子分别向内层收缩和向外部真空层伸展.与块体相比较,表面Co和Cr原子的自旋磁矩由于局域性的提升而明显增大.在研究的Co2CrGa(100)不同原子端面中,可以观察到块体中的半金属带隙在CoCo和GaGa原子端面被大量的表面态所破坏,仅仅在CrGa和CrCr原子覆盖的端面,检测到100%的理想极化,预测其在隧道结中可能具有较佳的应用潜力.  相似文献   

18.
在密度泛函理论的基础上,采用平面波赝势方法计算了立方相BaTiO3(001)表面的电子结构.结构优化表明最表层原子都向体内弛豫,且金属原子弛豫幅度最大,同时各层层间距变化呈交错分布.对两种表面结构的总能计算发现TiO:表面稳定性比BaO表面弱,一方面是由于TiO2表向结构中存在O-2p表面态,使价带和导带中电子态向高能区域偏移.另一方面,TO2表面附近Tj-O共价键存在强弱差异,有利于发生表面吸附.而在BaO表面结构中,最表层BaO的存在消除了这种差异,因而其表面稳定性较强.  相似文献   

19.
倪建刚  刘诺  杨果来  张曦 《物理学报》2008,57(7):4434-4440
在密度泛函理论的基础上,采用平面波赝势方法计算了立方相BaTiO3(001)表面的电子结构.结构优化表明最表层原子都向体内弛豫,且金属原子弛豫幅度最大,同时各层层间距变化呈交错分布.对两种表面结构的总能计算发现TiO2表面稳定性比BaO表面弱,一方面是由于TiO2表面结构中存在O-2p表面态,使价带和导带中电子态向高能区域偏移.另一方面,TO2表面附近Ti—O共价键存在强弱差异,有利于发生表面吸附.而在BaO表面结构中,最表层BaO的存在消除了这种差异,因而其表面稳定性较强. 关键词: 第一性原理 钛酸钡 电子结构 表面能  相似文献   

20.
采用第一原理平面波方法,计算了NiTi合金B2相的体相性质,如晶格常数,形成能和结合能,弹性常数,计算的结果和实验数据以及别人的计算结果符合得很好.其次,计算了NiTi(100),(110)表面的几何结构和电子结构,计算结果表明,(100)表面具有表面振荡现象,(110)表面产生了表面波纹,最外层的Ti原子相对理想表面向真空层移动了0.198?,Ni原子向表面内移动了0.122?.比较表面的电子结构,NiTi(100)表面Ti端位较Ni端位更容易发生反应,而(110)表面较体相更稳定. 关键词: NiTi 第一性原理 电子结构 表面  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号