首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribochemical reactions of KBr, KI and CaI2 with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O (L = formylhydrazine) give novel CuI and CuII complexes, which have been characterized by elemental analyses, spectral (i.r., u.v.–vis., 1H-n.m.r.) and magnetic measurements. The i.r. spectra indicate that (L) behaves in a monodentate manner, coordinating via the azomethine nitrogen (C-N) group in the CuII complexes, but behaving as a bidentate ligand, via the carbonyl oxygen and NH2 groups in the CuI complexes. KI and CaI2 react with [Cu(L)Cl2(EtOH)3/2(H2O)]-1/2H2O in the solid state, accompanied by a colour change, substitution of the chloride by iodide ions, and reduction of CuII to CuI to give complexes with formulae [Cu(L)I(EtOH)1/2] and [Cu1.7(L)I1.7(EtOH)1/2]. On the other hand, the tribochemical reaction of KBr with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O is accompanied by a colour change; substitution of the chloride by bromide ions, but without reduction of CuII and yields a complex of formula [Cu(L)2Br2(EtOH)(H2O)]1/2EtOH. The spectral and magnetic results suggest a distorted octahedral geometry for the CuII complexes while a tetrahedral geometry around the CuI ion. The non-stoichiometric structure of [Cu1.7(L)I1.7(EtOH)1/2] is discussed.  相似文献   

2.
Summary Reactions of bis(1-oxopyridine-2-thione) NiII or CuII with 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen) yield complexes of stoichiometry: Ni(C5H4NOS)2L {L = bipy, two isomers: (1) and (2), L = phen, one isomer (3)} and Cu(C5H4NOS)2(phen)·0.75CHCl3 (4). The spectroscopy (i.r., u.v.-vis., e.s.r.) and magnetism studies of the above complexes are described. On the basis of conductivity, the CuII-phen complex has been formulated as [Cu(C5H4NOS)(phen)2][Cu(C5H4NOS)3]·1.5CHCl3 (4). The vis. absorption spectra support similar octahedral structures for the minor bipy isomer (2) and for the NiII-phen complex [(3)], whereas the major isomer [(1)] has a different structure. The e.s.r. spectrum of the CuII-phen complex (4) is commensurate with an elongated octahedral structure. New methods for the preparation and spectroscopy of M(C5H4NOS)2 (M = Mn, Ni, Cu or Zn) compounds have been investigated.  相似文献   

3.
The reaction of [Cu(L)](ClO4)2 · H2O (L=1,3,10,12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) with NaN3 and Na2tp yields mononuclear and dinuclear copper(II) complexes, [Cu(L)(N3)](ClO4) (1) and [Cu(L)(μ-tp)](ClO4) · 2H2O (2). These complexes have been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and magnetic susceptibility. The crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one nitrogen atom from the azide group coordinating the axial position. The copper(II) ions in (2) are bridged by the terephthalate anion to form a dinuclear complex, in which each copper(II) ion reveals a distorted square-pyramid with four nitrogen atoms of the macrocycle and the oxygen atom of bridging tp ligand. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The magnetic susceptibility measurement for (2) exhibits a weak antiferromagnetic interaction between copper(II) centers with a 2J value of −2.21 cm−1 (H = −2JΣS1 · S2). The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

4.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclopropanedicarboxylic acid (H2-cpdc) generates one-dimensional hydrogen-bonded infinite chains [Ni(L)(H-cpdc)2] (1) and [Cu(L)(H-cpdc)2] (2) (H-cpdc = cyclopropane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structures of (1) and (2) show a distorted octahedral coordination geometry around the metal ion, with four secondary amines and two oxygen atoms of the H-cpdc ligand at the trans position. Complexes (1) and (2) display the one-dimensional hydrogen-bonded infinite chains. The cyclic voltammogram of the complexes display two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cpdc ligand.  相似文献   

5.
The reaction of CuCl2 · 2H2O and CdCl2 with di-(2-picolyl)sulfide (dps) leads to the formation of mononuclear copper(II) and binuclear cadmium(II) complexes, [Cu(dps)Cl2] · H2O (1) and [(dps)(Cl)CdII(μ-Cl)2CdII(Cl)(dps)] (2). The copper atom in (1) is coordinated to one sulfur and two nitrogen atoms from the dps ligand and two chlorides in a distorted square-pyramidal environment. Complex (2) has two distorted octahedra sharing the basal edge that contain the bridging chloro ligands, each of which resides at a center of inversion. Cyclic voltammetric data show that (1) undergoes two reversible one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. However, cyclic voltammetry of (2) gives two irreversible reduced waves.  相似文献   

6.
《Polyhedron》2005,24(16-17):2593-2598
Complexes [MnII(5bpno)3(ClO4)2], [MnII(5bpno)(CH3OH)2Cl2], [CuII(5bpno)2(ClO4)2], and [CuII(5bpno)Cl2] were prepared, where 5bpno stands for 2,2′-bipyridin-5-yl t-butyl nitroxide. X-ray crystallographic analysis clarified that the Cu ion in [Cu(5bpno)2(ClO4)2] was tetra-coordinate with four nitrogen atoms forming two chelate rings. Magnetic measurements revealed the presence of ferromagnetic couplings in the Mn complexes, whereas the Cu complexes showed antiferromagnetic couplings. Magnetic exchange couplings between the metal and radical spins through the intervening pyridine ring can be explained in terms of the spin-polarization mechanism.  相似文献   

7.
We report the synthesis, characterization, and crystal structures of new ligands of the pyridinylpyrazole type, i.e., 3,5‐bis(4‐butoxyphenyl)‐1‐(pyridin‐2‐yl)‐1H‐pyrazole ( L 1 ) and 3,5‐bis(4‐phenoxyphenyl)‐1‐(pyridin‐2‐yl)‐1H‐pyrazole ( L 2 ) (Scheme 1), and the study of their coordination behavior towards CuI and CuII. The versatility of this type of ligand, which can give access to different coordination spheres about the metal center, depending on the nature of the copper starting material used in the preparation of the complexes (Scheme 2), is illustrated. Thus, pseudo‐tetrahedral CuI as well as six‐coordinated tetragonal and distorted tetragonal pyramidal CuII derivatives were obtained for [Cu(L)2]PF6, [Cu(Cl)2(L)2] (L= L 1 , L 2 ), and [Cu(Cl)( L 1 )2]PF6, respectively. We also present a crystallographic support of a distorted octahedral cis‐bis(tetrafluoroborato‐κF)copper(II) compound found for [Cu(BF4)2( L 1 )2] ( 3 ).  相似文献   

8.
The reaction between 2,2′-bis(3-aminopyridyl) diselenide (L) and metal transition salts results in the formation of molecular or cluster complexes. The structural elucidation of the synthesized complexes [CuCl2(L)] ( 1 ), [Cu(3-NH2PySeO2)2]·2H2O ( 2 ), [Cu4(3-NH2PySe)4]·dimethylformamide ( 3 ), [CoCl2(L)] ( 4 ), [ZnCl2(L)] ( 5 ), and [Ag6(3-NH2PySe)6] ( 6 ) demonstrates the coordination of nitrogen atoms to CuII, CoII, and ZnII, and that of the selenium atoms to CuI and AgI, which agrees with Pearson’s hard and soft acids and bases (HSAB) theory. Furthermore, the oxidation of selenium with the formation of 3-aminopyridylseleninate [3-NH2PySeO2] bonded to the copper atom was observed in complex 2 . The antimicrobial action of complexes 1 , 2 , 4 , and 5 was evaluated against Mycobacterium fortuitum, Mycobacterium massiliense, and Mycobacterium abscessus. It was observed that all these complexes have potential antimicrobial activity compared with the free ligand and metal salts used in the synthesis.  相似文献   

9.
N-Carboethoxy-4-chlorobenzene thioamide (Hcct or HL) and N-carboethoxy-4-bromobenzene thioamide (Hcbt or HL) react with bivalent (Ni, Co, Cu, Ru, Pd and Pt), trivalent (Ru and Rh) and tetravalent (Pt) transition metal ions to give [MII(L)2], [RuIII(L)3], [RhIII(L)(HL)Cl2] and [Pt(L)2Cl2] complexes, respectively. In the presence of pyridine, CoII and NiII salts react with the ligands (HL) to give [MII(L)2Py] (M = Co and Ni) complexes. Soft metal ions abstract sulphur from the ligands to yield the corresponding sulphide, together with oxygenated forms of the ligands. All the metal complexes have been characterised by chemical analyses, conductivity, spectroscopic and magnetic measurements.  相似文献   

10.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

11.
Reaction of CuII salts with phenanthroline and oxalate (ox) or oxamate (oxm) gives [Cu(phen)(ox)(H2O)] · H2O or [Cu(phen)(oxm)(H2O)] · H2O complexes while direct treatment of CuII salts with oxalate or oxamate gives [NH4]2[Cu(ox)2] and [Cu(oxm)2(H2O)2] respectively. The X-ray structures of one example of each system, aquo-oxamato-phenanthroline-copper(II)-dihydrate and the polymeric ammonium-bis(aquo)-tetraoxalato-dicopper(II)-dihydrate, are reported.  相似文献   

12.
Methanol‐ and temperature‐induced dissolution–recrystallization structural transformation (DRST) was observed among two novel CuII complexes. This is first time that the combination of X‐ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII complex at 60 °C in methanol to obtain a binuclear copper(II) complex. Combining time‐dependent high‐resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis(8‐methoxyquinoline‐κ2N,O)bis(thiocyanato‐κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1 , to di‐μ‐methanolato‐κ4O:O‐bis[(8‐methoxyquinoline‐κ2N,O)(thiocyanato‐κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2 , viz. [Cu(SCN)2( L )2] ( Cu1 ) → [Cu( L )2] → [Cu( L )]/ L → [Cu2(CH3O)2(NCS)2( L )2] ( Cu2 ). We screened the antitumour activities of L (8‐methoxyquinoline), Cu1 and Cu2 and found that the antiproliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1 .  相似文献   

13.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

14.
Summary Reactions of glyoxal bis(morpholineN-thiohydrazone), H2gbmth, with NiCl2·6H2O, Ni(OAc)2·4H2O, Ni(acac)2· H2O, CuCl2·2H2O, Cu(OAc)2·H2O, Cu(acac)2, CoCl2· 6H2O, Co(OAc)2·4H2O and Co(acac)2·2H2O yield complexes of the type [M(gbmth)], [M=NiII, CuII or CoII]. Diacetyl reacts with morpholineN-thiohydrazide in the presence of nickel salts to yield [NiII(dbmth)], [NiII(dmth)(OAc)]H2O and [NiII(Hdmth)(NH3)Cl2] involving N2S2 and NSO donor ligands. Copper and cobalt complexes of N2S2 and NSO donor ligands with compositions [CuII(dbmth)], [CoII(dbmth)]·4H2O and [CoII(H2dbmth)]Cl2, have been isolated. The compounds have been characterised by elemental analyses, magnetic moments, molar conductance values and spectroscopic (electronic and infrared) data.  相似文献   

15.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

16.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

17.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

18.
Three novel compounds {[Cu(bpzm)(SCN)][Cu(bpzm)(MeOH)][Cu(SCN)4]}n (1a), {[Cu2(bpzm)2(μ-SCN)(SCN)3]}n (1b) and [Cu2(μ-SCN)2(SCN)2(dpa)2] (2) have been obtained in one-step self-assembly reaction of copper dichloride, a suitable N-N ligand (bis(pyrazol-1-yl)methane and 2,2′-dipyridylamine) and ammonium thiocyanate. For the reaction involving bis(pyrazol-1-yl)methane, an unprecedented in situ reduction of some Cu(II) ions to Cu(I) has been observed. The compound {[Cu(bpzm)(SCN)][Cu(bpzm)(MeOH)][Cu(SCN)4]}n (1a) belongs to a relatively scarce group of mixed-valence CuII/CuI coordination polymers with interesting polymeric architecture. It creates infinite two-dimensional structure consisting of layers extending along crystallographic plane (0 0 1), in which the cations [CuII(bpzm)(SCN)]+ and [CuII(bpzm)(MeOH)]2+ are connected by ions [CuI(SCN)4]3− through single end-to-end thiocyanato bridges. Structure 1b consists two crystallographically independent chains. The chain A has a zig-zag form and extends along the crystallographic direction [0 0 1], whereas the second chain is linear and runs along the crystallographic direction [0 1 0]. The structure 2 consists of dinuclear [Cu2(dpa)2(μ-SCN)2(SCN)2] units. Variable-temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic centres Cu(II) centers inside the crystal lattices of three novel compounds.  相似文献   

19.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

20.
    
A one-pot synthesis, that includes CuCl2.2H2O, Na2mnt, H2salph and Mn(CH3COO)3.H2O, leads to the isolation of a trinuclear heterometallic compound [MnIII(salph)(H2O)2CuII(mnt)2].4DMF (1) formed by Mn…S-Cu-S…Mn supramolecular interactions. Compound1 crystallizes in the monoclinic space groupP21/c witha = 13.433(4),b = 16.283(5),c = 15.072(4) ?, Β= 107.785(4)‡, Z = 2. In the crystal structure, the complex anion [CuII(mnt)2]2- bridges two [MnIII(salph)(H2O)]1+ cations through Mn…S contacts. The non-covalent hydrogen bonding and π-π interactions among the trinuclear [MnIII (salph)(H2O)2CuII(mnt)2)] complexes lead to an extended chain-like arrangement of [MnIII(salph) (H2O)]1+ cations with [CuII(mnt)2]2- anions embedded in between these chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号