首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In organic medium, bisprophyrins 1-6 connected by aromatic linkers self-assemble via subtle forces such as van der Waals, pi-pi stacking, and CH/pi to form supramolecular dimers. The structures of bisporphyrin dimer 1.1 were discussed using our chemical shift simulation, revealing that 1.1 mainly adopts the self-complementary structure A. ESI mass experiments of the bisporphyrins showed that 1-4 form only the dimers; however, trimers as well as the dimers of 5 and 6 were observed in the gas phase. Thus, the assemblies of bisporphyrin 5 and 6 should adopt structure B, which still has a binding site to which another bisporphyrin can fit to form oligomeric structures. The dimerization constant of bisporphyrin 1 is dependent on the solvent polarity: the values decrease in the order of toluene > chloroform > 20% methanol-chloroform. The thermodynamic studies of the dimerization processes revealed that desolvation as well as pi-pi stacking interactions play a key role in the formation of the self-complementary dimers. The binding studies of bisporphyrin 1 with a variety of electron deficient aromatic guests 9-17 were carried out in chloroform. Soret and Q-bands of 1 showed the characteristic changes with the addition of guests 9-13 and 15, and large upfield shifts of their protons were observed in their complexation studies with (1)H NMR spectroscopy. These results suggested that the electron deficient aromatic guests bound within the cleft of bisporphyrin 1 via charge transfer as well as pi-pi stacking interactions between the guests and the porphyrin rings. The dimerization constant of 1.1 is much smaller than the association constant of 1.9, suggesting that the dissociation of dimer 1.1 can be regulated by binding of 9 within the cleft. The addition of 9 into the solution of 1.1 resulted in the quick dissociation of the dimer and the formation of 1.9.  相似文献   

2.
A combination of electrochemistry, spectroelectrochemistry, and 1H NMR has been used to study the reduction and solution speciation in acetonitrile of two mononuclear Ru complexes containing the redox-active 9,11,20,22-tetraazatetrapyrido [3,2-a:2',3'-c:3' ',2' '-l:2' ',3' '-n]pentacene (tatpp) ligand. These complexes, [(bpy)2Ru(tatpp)][PF6]2 (1[PF6]2), and [(phen)2Ru(tatpp)][PF6]2 (2[PF6]2) (where bpy is 2,2'-bipyridine and phen is 1,10-phenanthroline), form pi-pi stacked dimers (e.g., pi-{1}24+ and pi-{2}24+) in solution as determined by 1H NMR studies in an extended concentration range (90 - 5000 microM) as well as via simulation of the electrochemical data. The dimerization constant for 12+ in acetonitrile is 2 x 10(4) M(-1) as determined from the NMR data. Slightly higher dimerization constants (8 x 10(4) M(-1)) were obtained via simulation of the electrochemical data and are attributed to the presence of the supporting eletrolyte. Electrochemical and spectroelectrochemical data show that the pi-pi stacked dimers are electroreduced in two consecutive steps at -0.31 and -0.47 V vs Ag/AgCl, which is assigned to the uptake of one electron by each tatpp ligand in pi-{1}24+ to give first pi-{1}23+and then pi-{1}22+. At potentials negative of -0.6 V, the electrochemical data reveal two different reaction pathways depending on the complex concentration in solution. At low concentrations (< or =20 microM), the next electroreduction occurs on a monomeric species (e.g., [(bpy)2Ru(tatpp)]+/0) showing that the doubly reduced pi-pi dimer (pi-{1}22+ and pi-{2}22+) dissociates into monomers. At high concentrations (> or =100 microM), reduction of pi-{1}22+ or pi-{2}22+ induces another dimerization reaction, which we attribute to the formation of a sigma-bond between the radical tatpp ligands and is accompanied by the appearance of a new peak in the absorption spectrum at 535 nm. This new sigma-dimer can undergo one additional tatpp based reduction to form sigma-{1}20 or sigma-{2}20, in which the tatpp-bridged assembly is the site of all four reductions. Finally, potentials negative of -1.2 V result in the electroreduction of the bpy or phen ligands for complexes 12+ or 22+, respectively. For the latter complex 22+, this process is accompanied by the formation of an electrode adsorbed species.  相似文献   

3.
Yang J  Ma JF  Liu YY  Ma JC  Batten SR 《Inorganic chemistry》2007,46(16):6542-6555
An investigation into the dependence of coordination polymer architectures on organic-acid ligands is reported on the basis of the reaction of Pb(NO3)2 and eight structurally related organic-acid ligands in the presence or absence of N-donor chelating ligands. Eight novel lead(II)-organic architectures, [Pb(adip)(dpdp)]2 1, [Pb(glu)(dpdp)] 2, [Pb(suc)(dpdp)] 3, [Pb(fum)(dpdp)] . H2O 4, [Pb2(oba)(dpdp)2] . 2(dpdp).2(NO3).2H2O 5, [Pb2(1,4-bdc)2(dpdp)2] . H2O 6, [Pb(dpdc)(dpdp)] 7, and [Pb(1,3-bdc)(dpdp)] . H2O 8, where dpdp = dipyrido[3,2-a:2',3'-c]-phenazine, H2adip = adipic acid, H2glu = glutaric acid, H2suc = succinic acid, H2fum = fumaric acid, H2oba = 4,4'-oxybis(benzoic acid), 1,4-H2bdc = benzene-1,4-dicarboxylic acid, H2dpdc = 2,2'-diphenyldicarboxylic acid, and 1,3-H2bdc = benzene-1,3-dicarboxylic acid, were successfully synthesized under hydrothermal conditions through varying the organic-acid linkers and structurally characterized by X-ray crystallography. Compounds 1-8 crystallize in the presence of organic-acid linkers as well as secondary N-donor chelating ligands. Diverse structures were observed for these complexes. 1 and 5 have dinuclear structures, which are further stacked via strong pi-pi interactions to form 2D layers. 2-3 and 6-8 feature chain structures, which are connected by strong pi-pi interactions to result in 2D and 3D supramolecular architectures. Compound 4 contains 2D layers, which are further extended to a 3D structure by pi-pi interactions. A systematic structural comparison of these 8 complexes indicates that the organic-acid structures have essential roles in the framework formation of the Pb(II) complexes.  相似文献   

4.
We report the supramolecular chemistry of several metal complexes of N-(4-pyridyl)benzamide (NPBA) with the general formula [Ma(NPBA)2AbSc], where M = Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ag+; A = NO3-, OAc-; S = MeOH, H2O; a = 0, 1, 2; b = 0, 1, 2, 4; and c = 0, 2. NPBA contains structural features that can engage in three modes of intermolecular interactions: (1) metal-ligand coordination, (2) hydrogen bonding, and (3) pi-pi stacking. NPBA forms one-dimensional (1-D) chains governed by hydrogen bonding, but when reacted with metal ions, it generates a wide variety of supramolecular scaffolds that control the arrangement of periodic nanostructures and form 1- (2-4), 2- (5), or 3-D (6-10) solid-state networks of hydrogen bonding and pi-pi stacking interactions in the crystal. Isostructural 7-9 exhibit a 2-D hydrogen bonding network that promotes topotaxial growth of single crystals of their isostructural family and generates crystal composites with two (11) and three (12) different components. Furthermore, 7-9 can also form crystalline solid solutions (M,M')(NPBA)2(NO3)2(MeOH)2 (M, M' = Co2+, Ni2+, or Zn2+, 13-16), where mixtures of Co2+, Ni2+, and Zn2+ share the same crystal lattice in different proportions to allow the formation of materials with modulated magnetic moments. Finally, we report the effects that multidimensional noncovalent networks exert on the magnetic moments between 2 and 300 K of 1-D (4), 2-D (5), and 3-D (7, 8, 10, and 13-16) paramagnetic networks.  相似文献   

5.
A series of Pb(II) coordination polymers [Pb(ndc)(dpp)] (1), [Pb(ndc)(ptcp)].0.5 H2O (2), [Pb(ndc)(dppz)] (3), [Pb(ndc)(tcpn)(2)] (4), [Pb2(ndc)2(tcpp)] (5), [Pb(Hndc)2].H2O (6), [Pb(ndc)(dma)] (7), [Pb(bdc)(dma)] (8), [Pb(trans-chdc)(H2O)] (9), and [Pb2(cis-chdc)2].NH(CH3)2 (10), where ndc=1,4-naphthalenedicarboxylate, dpp=4,7-diphenyl-1,10-phenanthroline, ptcp=2-phenyl-1H-1,3,7,8-tetraazacyclopenta[l]phenanthrene, dppz=dipyrido[3,2-a:2',3'-c]phenazine, tcpn=2-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)naphthol, tcpp=4-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)phenol, dma=N,N-dimethylacetamide, bdc=1,4-benzenedicarboxylate, and chdc=1,4-cyclohexanedicarboxylate, have been synthesized from a hydrothermal or solvothermal reaction system by varying the ligands or the solvents. Compounds 1-5 crystallize with an N-donor chelating ligand and an aromatic dicarboxylate linker. Compounds 1-4 are 1D polymers with different pi-pi stacking interactions, whereas compound 5 consists of 2D layers. The structures of compounds 7, 8, and 10 are 3D frameworks formed by connection of the Pb(II) centers by organic acid ligands. Compound 7 is chiral although the ndc ligand is achiral, while the framework of 8 is a typical 3D (3,4)-connected net. Compound 10 is the first example of Pb(II) wheel cluster [Pb(8)O(8)] units bridged by carboxylate groups. Compound 6 contains 1D chains which are further extended to a 3D structure by pi-pi interactions. Compound 9 consists of a 2D network constructed by Pb(II) centers and trans-chdc ligands. The structural differences between 7 and 8 and between 9 and 10 indicate the importance of solvents for framework formation of the coordination polymers. By varying the solvent the cis and trans conformations of H(2)chdc in 9 and 10 were separated completely. The photoluminescence and nonlinear optical properties of the coordination polymers have also been investigated.  相似文献   

6.
New silver (I) coordination polymers has been successfully designed and synthesized using heteroditopic ureidopyridine ligands 1 and 2 via a combination of coordinations bonds, hydrogen bonding, and pi-pi stacking interactions. This study shows an example of the orientation of the pyridine nitrogen relative to the urea moiety (4-substituted, 1, or 3-substituted, 2), used to control the packing of resulting crystalline coordination polymers. The ureidopyridine ligands present some flexibility because of the conformational rotation around the central urea moiety. The co-complexation of the silver(I) cation by two pyridine moieties and of the PF(6)(-) counteranion by the urea moiety results in the formation of discrete [1(2)Ag](+)PF(6)(-), (3) and [2(2)Ag](+)PF(6)(-), (4) complexes presenting restricted rotation around the central urea functionality. The geometrical information contained in the structures of ligands 1 and 2 and the heteroditopic complexation of silver hexafluorophosphate are fully exploited in an independent manner resulting in the emergence of quasi-rigidly preorganized linear and angular building blocks of 3 and 4, respectively. Additional pi-pi stacking contacts involving interactions between the pi-donor benzene and the pi-acceptor pyridine systems reinforce and direct the self-assembly of the above-described combined structural motifs in the solid state. Accordingly, linear and tubular arrays of pi-pi stacked architectures are generated in the solid state by synergistic and sequential metal ion complexation, hydrogen bonding, and pi-pi stacking interactions.  相似文献   

7.
Solvothermal reactions of trans-stilbene-4,4'-dicarboxylic acid (H(2)STDC) and zinc(ii) acetate in the presence of systematically varied terminal ligands afforded a series of supramolecular architectures with formula [Zn(STDC)(py)(2)].py (1), [Zn(STDC)(bipy)(H(2)O)].0.5py.H(2)O (2), [Zn(STDC)(biql)] (3), [Zn(STDC)(phen)].solv (solv = DMSO, 4a; DMF, 4b), where py = pyridine, bipy = 2,2'-bipyridine, biql = 2,2'-biquinoline, phen = 1,10-phenathroline. X-Ray analyses revealed that all the compounds consist of infinite 1D zigzag polymer chains. Investigations based on intermolecular interactions illustrate that the chelate terminal ligands play a critical role in determining the packing/entangling modes of the chains and the porosity of the final three-dimensional architectures. In compounds 1 and 2, the weak hydrogen bonding and/or pi-pi stacking interactions assemble the parallel chains into diamond nets with four- and two-fold interpenetration, respectively. In compound 3, the hydrogen bonding and pi-pi stacking interactions collaborate to arrange the chains in two different directions, generating a 3D supramolecular architecture with high catenation. The most interesting packing occurs in 4. Extensive pi-pi stacking interactions involving the terminal and bridging ligands arrange the chains in four different directions, and the chains are hierarchically entangled to produce an unprecedented 3D microporous framework with high stability. Based on comparative investigations, the effects of the terminal and bridging ligands on the packing of zigzag chains have been discussed. The reversible guest inclusion properties of 2 and 4 have also been demonstrated.  相似文献   

8.
The reactions between silver tetrafluoroborate and the ligands 1,2,4,5-C(6)H(2)[CH(2)OCH(2)C(pz)(3)](4) (L1, pz = pyrazolyl ring), o-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2) (L2), and m-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2) (L3) yield coordination polymers of the formula (C(6)H(6)(-)(n)[CH(2)OCH(2)C(pz)(3)](n)(AgBF4)(m))( infinity ) (n = 4, m = 2, 1; n = 2, ortho substitution, m = 1, 2; meta substitution, m = 2, 3). In the solid state, L2 molecules dimerize by a pair of C-H.pi interactions, forming an arrangement that resembles the tetratopic ligand L1. In the solid-state structure of 1, each silver atom is kappa(2)-bonded to two tris(pyrazolyl)methane units from different ligands with the overall structure a polymer made up from 32-atom macrocyclic rings formed by bonding tris(pyrazolyl)methane groups from nonadjacent positions on the central arene rings to the same two silver atoms. In 2, each silver is bonded to two tris(pyrazolyl)methane units in the same kappa(2)-kappa(2) fashion as with 1, forming a polymer chain. The chains are organized into dimeric units by strong face-to-face pi-pi stacking between the central arene rings making bitopic L2 act as half of tetratopic L1. The chains in both structures are organized by weak C-H.F hydrogen bonds and pi-pi stacking interactions into very similar 3D supramolecular architectures. The structure of 3 contains three types of silvers with the overall 3D supramolecular sinusoidal structure comprised of 32-atom macrocycles. Infrared studies confirm the importance of the noncovalent interactions. Calculations at the DFT (B3LYP/6-31G) level of theory have been carried out on L2 and also support C-H.pi interactions. Electrospray mass spectral data collected from acetone or acetonitrile show the presence of aggregated species such as [(L)Ag(2)(BF(4))](+) and [(L)Ag(2)](2+), despite the fact that (1)H NMR spectra of all compounds show that acetonitrile completely displaces the ligand whereas acetone does not.  相似文献   

9.
Schmuck C  Heil M 《Organic letters》2001,3(9):1253-1256
With spherical counteranions such as chloride or hexafluorophosphate, the glycine-derived guanidiniocarbonyl pyrrole cation 1 self-assembles into discrete dimers in DMSO, as can be seen by NMR and ESI mass spectral analysis. According to concentration- and temperature-dependent NMR studies, the dimerization is endothermic and therefore entropy driven. Molecular modeling suggests that the dimers are held together by hydrogen bonding in combination with pi-pi interactions. In the presence of picrate anions, dimerization of cation 1 does not occur, probably due to the formation of pi-stacked ion pairs.  相似文献   

10.
Two novel supramolecular architectures, [[Ag(2)L(1)(2)][X](2)] with X = CF(3)SO(3)(-) (2a) or X = NO(3)(-) (2b) and [[AgL(1)(2)][X]](n) with X = BF(4)(-) (3), were constructed by self-assembly and obtained in quantitative yields, using AgX as a building block and L(1) as the bridging ligand (L(1) = 1,3-bis(benzimidazol-1-ylmethyl)benzene). The X-ray molecular structures of 2a and 3 are reported. Complex 2a was identified as a metallomacrocycle in which one ligating triflate anion is coordinated to each of the two unsaturated Ag(I) ions. 2a crystallizes in monoclinic unit cell P2(1)/n with a = 9.728(6) A, b = 17.303(4) A, c = 13.268(3) A, beta = 92.52(4) degrees, V = 2231(2) A(3), and Z = 2. Remarkably, the X-ray structure of 2a shows a layered network structure consisting of infinite metallomacrocycles held together through pi-pi interactions between benzimidazole rings. In dramatic contrast, the product 3 prepared from AgBF(4) and L(1) lacks metal-counterion bonding, leading to a supramolecular 3D network with the following three outstanding features: (i) in one dimension, metallomacrocycles containing two Ag centers and two bridging ligands form infinite, double-stranded chains; (ii) neighboring chains are arranged by two distinct pi-pi interactions, one between substituted benzene rings and the other between benzimidazole rings, leading to a 3D structure; (iii) cavities within the 3D network contain BF(4)(-) counteranions. 3 crystallizes in monoclinic unit cell C2/c with a = 25.33(3) A, b = 11.655(6) A, c = 18.466(8) A, beta = 123.00(8) degrees, V = 4572(8) A(3), and Z = 4. Interestingly, electrospray mass spectroscopy suggests in either case that the identified elemental subunit [AgL(1)(2)](+) is the key building block which self-assembles and subsequent anion templation provides either the macrocycles 2a, b or the inorganic polymer 3. Remarkably, in dichloromethane solvent ligand-to-metal stoichiometries of 2:1 in 3 and 1:1 in 2a, b are obtained even with excess ligand, showing the power of metal-anion interactions in determining the overall supramolecular structure. Anion metathesis, showing supramolecular structural rearrangements from 2a to 2b and more spectacularly from 3 to 2b, smoothly occurred. The crucial effect and the nature of coordinating counteranions (BF(4)(-), CF(3)SO(3)(-), NO(3)(-)) on the supermolecule design are presented and discussed.  相似文献   

11.
We report the X-ray crystal structure of 11 molecular clips and analyze the influence of substituents (e.g., OMe, Me, and NO2) and their location on the observed crystal packing. Molecular clips 3a and 3b form tapelike structures in the crystal due to pi-pi interactions between the aromatic walls. Compounds 3d, 3eC, and 3fC form dimers driven by critical C-H...O interactions and then form tapes driven by pi-pi interactions in the crystal. These two building motifs, pi-pi and C-H...O interactions, can be used to rationalize the enantio- and diastereoselectivity observed in the X-ray crystal structures of the remaining five molecular clips. For example, the C-H...O interactions are found to dictate the formation of homochiral dimers in the structures of (+/-)-3eT and (+/-)-3fT and to control the diastereoselective formation of 6a2-6c2 dimeric motifs with internal p-dimethoxy-o-xylylene walls. Overall, the results suggest that substituent effects that induce even weak intermolecular interactions (e.g., C-H...O) can be used to reliably control crystal packing within glycoluril-based systems.  相似文献   

12.
Six pentafluorophenylplatinum(II) complexes containing proton acceptor atoms (F) and pyridine-like aromatic ligands able to act as proton donors have been synthesized and characterized, with emphasis on the factors that mediate their supramolecular aggregation in the solid state--hydrogen bonds and pi-pi interactions. The crystal structure analyses of the mononuclear complexes cis-[Pt(C6F5)2(napy)](1), cis-[Pt(C6F5)2(CH2napy)](3), cis-[Pt(C6F5)2(2-ammpy)](5), and cis-[Pt(C6F5)2(2-bipym)](6) reveal the influence of D-HPt and D-HF (D=C, N) hydrogen bonding on the organization of molecules into stacks, which can be further interconnected to generate channels. The prevalence of hydrogen bonding over pi-pi interactions between aromatic rings in establishing the nature of the observed supramolecular aggregation is demonstrated.  相似文献   

13.
Self-dimerizations of twenty three aromatic carboxylate and sulfonate ions from their electrophoretic mobilities in aqueous solution were estimated by capillary zone electrophoresis (CZE). The magnitudes of the self-dimerizations ascribed to pi-pi interactions of these aromatic anions were determined by CZE as dimerization constants (KD). Although the largest KD value of 1.2 dm3 mol(-1) for 9-anthracenecarboxylate ion (9-AC) in these aromatic anions was found, almost all of the KD values were zero, or near to zero. It was found that the pi-pi interactions of the aromatic anions were relatively small at zero ionic strength, in which the contribution of an ionic association between the cation and aromatic anions could be excluded from the KD values, since the contribution of the electric repulsion between the aromatic anions on the KD values was large. The relatively large KD value of 9-AC caused that it electro-migrates as its planar shape, and has an anthracene ring of a largely hydrophobic aromatic ring.  相似文献   

14.
Four succinato-bridged complexes of copper(II) have been synthesized. Complex 1, [Cu(2)(mu-OH(2))(2)L(bpy)(2)(NO(3))(2)](n) and 2, [Cu(2)(mu-OH(2))(2)L(phen)(2)(NO(3))(2)](n)(bpy = 2,2[prime or minute]-bipyridine; phen = 1,10-phenanthroline and LH(2)= succinic acid) exhibit 1D coordination polymer structures where both the nitrate ions are directly linked to the copper(ii) producing synthons in a 2D sheet. A novel 2D grid-like network, ([Cu(4)L(2)(bpy)(4)(H(2)O)(2)](ClO(4))(4)(H(2)O))n3, is obtained upon changing the nitrate by perchlorate anion in complex 1, where the channels are occupied by the anions. On changing the nitrate by tetrafluoroborate anion in complex 2, a novel octanuclear complex, [Cu(8)L(4)(phen)(12)](BF(4))(8).8H(2)O 4, is isolated. The coligand bpy and phen in these complexes show face-to-face (in 1,2,3,4) or edge-to-face (in 4 )pi-pi interactions forming the multidimensional supramolecular architectures. Interestingly, the appearance of edge-to-face pi-pi interactions in complex facilitates the formation of discrete octanuclear entities. Variable-temperature (300-2 K) magnetic measurements of complexes have been done. Complexes 1 and 2 show very weak antiferromagnetic (OOC-CH(2)-CH(2)-COO) and ferromagnetic coupling (mu-H(2)O). Complex 3 also shows antiferromagnetic (syn-syn mu-OCO), and ferromagnetic coupling (mu-O of the -COO group). Complex 4 with two types (syn-syn and syn-anti) of binding modes of the carboxylate group shows strong antiferromagnetic interaction.  相似文献   

15.
Wen HR  Wang CF  Song Y  Gao S  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8942-8949
With the use of the tailored cyanometalate precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl)hydroborate) as the building block to react with fully solvated Cu(II), Co(II), and Ni(II) cations, four one-dimensional (1D) heterobimetallic cyano-bridged chain complexes of squares, [(Tp)2Fe(III)2(CN)6Cu(CH3OH).2CH3OH]n (1), [(Tp)2Fe(III)2(CN)6Cu(DMF).DMF]n (2), [(Tp)2Fe(III)2(CN)6M(CH3OH)2.2CH3OH]n (M = Co (3) and Ni (4)), have been prepared. In complexes 1 and 2, the Cu(II) ions are pentacoordinated in the form of a slightly distorted square-based pyramid, and they are linked by distorted octahedrons of [(Tp)Fe(CN)3]- to form 1D chains of squares. In complexes 3 and 4, both the central Co(II) and Ni(II) ions have a slightly distorted octahedral coordination geometry, and they are bridged by [(Tp)Fe(CN)3]- to form similar 1D chains of squares. There are weak interchain pi-pi stacking interactions through the pyrazolyl groups of the Tp ligands for complexes 3 and 4. The crystal structures and magnetic studies demonstrate that complexes 1 and 2 exhibit intrachain ferromagnetic coupling and single-chain magnets behavior, and the blocking temperature is ca. 6 K for complex 1 and ca. 3 K for complex 2. Complexes 3 and 4 show significant metamagnetic behavior, where the cyanides mediate the intrachain ferromagnetic coupling between Fe(III) and Co(II) or Ni(II) ions and the interchain pi-pi stacking interactions lead to antiferromagnetic couplings. The field dependence of the magnetization measurements shows that the critical field is around 1 kOe for complex 3 and 0.8 kOe for complex 4 at 1.8 K.  相似文献   

16.
The first three representatives of the new family of oxacyclophanes incorporating two 2,7-dioxyfluorenone fragments, connected by [-CH(2)CH(2)O-](m) spacers (m=2-4), have been synthesized. The yield of the smallest oxacyclophane (m=2) is considerably higher with respect to the larger ones (m=3 and m=4), which are formed in comparable yields. Molecular modeling and NMR spectra analysis of the model compounds suggest that an essential difference in oxacyclophanes yields is caused by formation of quasi-cyclic intermediates, which are preorganized for macrocyclization owing to intramolecular pi-pi stacking interactions between the fluorenone units. The solid-state structures of these oxacyclophanes exhibit intra- and intermolecular pi-pi stacking interactions that dictate their rectangular shape in the fluorenone backbone and crystal packing of the molecules with the parallel or T-shape arrangement. The crystal packing in all cases is also sustained by weak C--HO hydrogen bonds. FAB mass spectral analysis of mixtures of the larger oxacyclophanes (m=3 and m=4) and a paraquat moiety revealed peaks corresponding to the loss of one and two PF(6) (-) counterions from the 1:1 complexes formed. However, no signals were observed for complexes of the paraquat moiety with the smaller oxacyclophane (m=2). Computer molecular modeling of complexes revealed a pseudorotaxane-like incorporation of the paraquat unit, sandwiched within a macrocyclic cavity between the almost parallel-aligned fluorenone rings of the larger oxacyclophanes (m=3 and m=4). In contrast to this, only external complexes of the smallest oxacyclophane (m=2) with a paraquat unit have been found in the energy window of 10 kcal mol(-1).  相似文献   

17.
Quantum chemistry calculations reveal that the subtle pi-pi interactions, usually in the range 2-4 kcal/mol, will become substantially significant, from 6 to 17 kcal/mol, in the presence of metal ion. The metal ions have higher affinity toward a pi-pi dimer compared to a single pi-moiety. Considering the widespread occurrence of cation-pi-pi motifs in chemistry and biology, as evident from the database analysis, we propose that the two key noncovalent forces, which govern the macromolecular structure, cation-pi and pi-pi, work in concert.  相似文献   

18.
A series of mono- and bis(2-pyridyl)-arylmethanone ligands were prepared by utilizing the reaction between either bromobenzonitrile or dicyanobenzene and 2-lithiopyridine in either a 1:1 or a 2:1 mol ratio, respectively. They react with [Ru(bpy)2(EtOH)2][PF6]2 to yield the new complexes [N,O-PhC(O)(2-py)Ru(bpy)2][PF6]2 (6), [p-N,O-BrC6H4C-(O)(2-py)Ru(bpy)2][PF6]2 (7), [m-N,O-BrC6H4C(O)(2-py)Ru(bpy)2][PF6]2 (8), [p-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)]-[PF6]4 (9), and [m-[N,O-C(O)(2-py)2Ru(bpy)2]2(C6H4)][PF6]4 (10). The solid state structures of 6 and 7 show that the octahedral cations are arranged in sinusoidal chains by pi-pi stacking and CH-pi interactions between bipyridyl groups. Substitution of bromine for hydrogen at the para position of the aryl group in 7 causes the aryl group to become involved in pi-pi stacking interactions that organize the chains into a sheet structure. The complicated 1H and 13C NMR spectra of the complexes have been fully assigned using 2D methods. The optical spectra show two absorption maxima near 434 and 564 nm due to MLCT transitions. The compounds were found to be nonluminescent. Electrochemical data acquired for CH3CN solutions of the bimetallic derivatives indicate that there is no electronic communication between metal centers mediated either through space or through ligand orbitals. Crystallographic information: 6.0.5CH3CN is monoclinic, C2/c, a = 24.3474(11) A, b = 13.7721(6) A, c = 21.3184(10) A, beta = 103.9920(10) degrees, Z = 8; 7 is monoclinic, P2(1)/c, a = 10.6639(11) A, b = 23.690(3) A, c = 13.7634(14) A, beta = 91.440(2) degrees, Z = 4.  相似文献   

19.
The polydentate ligand 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (dpyatriz) in combination with the Cu(ClO 4) 2/CuX 2 salt mixtures (X (-) = Cl (-), Br (-), or N 3 (-)) leads to the formation of molecular coordination aggregates with formulas [Cu 3Cl 3(dpyatriz) 2](ClO 4) 3 ( 2), [Cu 3Br 3(dpyatriz) 2](ClO 4) 3 ( 3), and [Cu 4(N 3) 4(dpyatriz) 2(DMF) 4(ClO 4) 2](ClO 4) 2 ( 4). These complexes consist of two dpyatriz ligands bridged via coordination to Cu (II) and disposed either face-to-face in an eclipsed manner ( 2 and 3) or parallel and mutually shifted in one direction. The copper ions complete their coordination positions with Cl (-) ( 2), Br (-) ( 3), or N 3 (-), ClO 4 (-), and N, N-dimethylformamide (DMF) ( 4) ligands. All complexes crystallize together with noncoordinate ClO 4 (-) groups that display anion...pi interactions with the triazine rings. These interactions have been studied by means of high level ab initio calculations and the MIPp partition scheme. These calculations have proven the ClO 4 (-)...[C 3N 3] interactions to be favorable and have revealed a synergistic effect from the combined occurrence of pi-pi stacking of triazine rings and the interaction of these moieties with perchlorate ions, as observed in the experimental systems.  相似文献   

20.
Four novel 2,3-naphtho-15-crown-5 (N15C5) and 2,3-naphtho-18-crown-6 (N18C6) complexes [Na(N15C5)]2[Pd(SCN)4] (1), [Na(N15C5)]2[Pt(SCN)4] (2), [K(N18C6)]2[Pd(SCN)4] (3) and [K(N18C6)]2[Pt(SCN)4] (4) were synthesized and characterized by elemental analysis, FT-IR spectra and single-crystal X-ray diffraction. The structure analyses reveal that both 1 and 2 are assembled into zigzag chains by the strong intermolecular pi-pi stacking interactions between adjacent 2,3-naphthylene groups of N15C5. The molecules of complexes 3 and 4 are linked into 1D chains by the bridging K-O(ether) interactions between the adjacent [K(N18C6)]+ units and the resulting chains are constructed into a novel 2D network by inter-chain pi-pi stacking interactions between the neighboring 2,3-naphthylene moieties of N18C6. According to the supramolecular self-assemblies of complexes 1-4, two types of stacking model of naphthylene groups are given and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号