首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The E200K mutation on chromosome 20 can cause familial Creutzfeldt-Jakob disease (CJD). Patients with this mutation are clinically similar to those with sporadic CJD, but their imaging features are not well documented. We report here the quantitative and qualitative evaluation of the magnetic resonance (MR) imaging characteristics of this unique group of patients using three-dimensional spoiled gradient recalled (SPGR) echo images, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurements, MR spectroscopy and a fluid-attenuated inversion recovery (FLAIR) sequence. The SPGR and ADC data were analyzed with SPM99. ANCOVA and regression models were used for a region-of-interest (ROI) analysis of ADC and metabolic ratios. CJD patients had a decreased fraction of gray matter and an increased fraction of cerebrospinal fluid (P=.001) in the cortex and cerebellum and increased ADC values in the cortex (P<.001). Focal decreases of ADC were found in the putamen via ROI analysis (548+/-83 vs. 709+/-9 microm(2)/s, P=.02). N-acetyl aspartate (NAA) was generally reduced, with the NAA/Cho ratio lowest in the cingulate gyrus. Qualitative assessment revealed hyperintensities on FLAIR, DWI or both in the putamen (three out of four patients), caudate (three out of four patients) and thalamus. These results provide a framework for future study of patients with genetically defined familial CJD.  相似文献   

2.
Recent studies in the human visual cortex using diffusion-weighted functional magnetic resonance imaging (fMRI) have suggested that the apparent diffusion coefficient (ADC) decreases, in contrast to earlier studies that consistently reported ADC increases during neuronal activation. The changes, in either case, are hypothesized to provide the ability to improve the spatial specificity of fMRI over conventional blood-oxygenation-level-dependent (BOLD) methods. Most recently, the ADC decreases have been suggested as originating from transient cell swelling caused by either shrinkage of the extracellular space or some intracellular neuronal process that precedes the hemodynamic response. All of these studies have been conducted in humans and at lower magnetic fields, which can be limited by the signal-to-noise ratio (SNR). The low SNR can lead to significant partial-volume effects because of the lower spatial resolutions required to attain sufficient SNR in diffusion-weighted images. Human studies also have the potential confound of motion. At high magnetic fields and in animal model studies, these limitations are alleviated. At high fields, SNR increases, tissue signals are enhanced and signal changes inside the blood are significantly reduced compared to lower fields. In this work, we were able to measure a small but significant ADC decrease in tissue areas, in conjunction with brain activation in the cat visual cortex at 9.4 T when using highly diffusion-weighted images (b>1200 s/mm2) where intravascular effects are minimal. When using low b-values, delayed increases in the tissue ADC during activation were observed. No significant changes in ADC were observed in surface vessels for any diffusion weighting. Furthermore, we did not observe any temporal differences in the highly diffusion-weighted data compared to BOLD; however, although the changes may likely be vascular in nature, they are highly localized to the tissue areas.  相似文献   

3.
《Magnetic resonance imaging》1996,14(9):1113-1116
Diagnostic difficulties in discriminating brain abscess from necrotic or cystic tumors using conventional CT and MRI have been reported. In this article, we examine the diagnostic ability of diffusion-weighted imaging to discriminate brain abscess from necrotic or cystic tumors. In previous reports, necrotic or cystic tumors show low signal intensity in diffusion-weighted imaging, indicating a high apparent diffusion coefficient (ADC). In contrast, in our study, high signal intensity was observed in the abscess fluid, associated with low ADC.  相似文献   

4.
Susac syndrome: serial diffusion-weighted MR imaging   总被引:2,自引:0,他引:2  
Susac syndrome (SS) is a clinical triad of hearing loss, retinal artery occlusion and encephalopathy. The typical MR imaging findings of multiple focal lesions in the corpus callosum and subcortical white matter can be easily misdiagnosed as multiple sclerosis. On diffusion-weighted (DW) MR imaging, new lesions were hyperintense, with reduced apparent diffusion coefficient (ADC). These lesions later became less prominent or hypointense on subsequent DW MR imaging. Serial DW imaging and ADC maps may be useful in differentiating SS from demyelinating diseases.  相似文献   

5.
This study aimed to assess the effect of diffusion-weighted image (DWI) quality on abdominal apparent diffusion coefficient (ADC) measurements and the usefulness of anisotropic images. Twenty-six patients (10 men and 16 women; mean, 58.1 years) who underwent DW imaging and were diagnosed not to have any abdominal diseases were analyzed. Single-shot spin-echo echo-planar DW imaging was performed, and one isotropic and three orthogonal anisotropic images were created. ADCs were calculated for liver (four segments), spleen, pancreas (head, body, tail) and renal parenchyma. Image quality for each organ part was scored visually. We estimated the correlation between ADC and image quality and evaluated the feasibility of using anisotropic images. ADCs and image quality were affected by motion probing gradient directions in the liver and pancreas. A significant inverse correlation was found between ADC and image quality. The r values for isotropic images were −.46, −.48, −.70 and −.28 for the liver, spleen, pancreas and renal parenchyma, respectively. Anisotropic images had the best quality and lowest ADC in at least one organ part in 17 patients. DWIs with the best quality among isotropic and anisotropic images should be used in the liver and pancreas.  相似文献   

6.
The dynamics of the sol/gel phase transition in agarose was analyzed with magnetic resonance elastography (MRE) and diffusion-weighted imaging, providing complementary information on a microstructural as well as on a macroscopic spatial scale. In thermal equilibrium, the diffusion coefficient of agarose is linearly correlated with temperature, independent of the sol/gel phase transition. In larger agarose samples, the transition from the sol to the gel state was characterized by a complex position and temperature dependency of both MRE shear wave patterns and apparent diffusion coefficients (ADC). The position dependency of the temperature was experimentally found to be qualitatively similar to the behavior of the ADC maps. The dynamics of the temperature could be described with a simplified model that described the heat exchange between sol and gel compartments. The experiments supported the approach to derive temperature maps from the ADC maps by a linear relationship. The spatially resolved dynamics of the temperature maps were therefore employed to determine the elasticities. For this reason, experimental MRE data were simulated using a model of coupled harmonic oscillators. The calculated images agreed well with the experimentally observed MRE wave patterns.  相似文献   

7.
Fluid-attenuated inversion recovery (FLAIR) technique offers an effective tool to diminish partial-volume averaging effects from cerebrospinal (CSF) signal with in vivo magnetic resonance imaging. CSF-suppressed and unsuppressed direction-dependent diffusion-weighted (DW) images are obtained with a DW spin-echo EPI sequence in a single acquisition scheme. Comparison of unsuppressed and CSF-suppressed apparent diffusion coefficient (ADC) maps yields consistent values for brain tissue in volunteers when no partial-volume effects are expected, but differs considerably at borders of parenchyma to ventricles and sulci. From theory and phantom studies, a corrected anisotropy index is introduced considering differences of statistical fit errors. Anisotropy of white matter is observed in normal brain of volunteers. Anisotropy index maps reveal destruction of fiber tracts in pathologic areas. Results of a preliminary study on 12 patients with intra-axial tumors indicate an improved delineation of tumor boundaries of FLAIR ADC maps against unsuppressed acquisition.  相似文献   

8.
Keyhole diffusion tensor imaging (keyhole DTI) was previously proposed in cardiac imaging to reconstruct DTI maps from the reduced phase-encoding images. To evaluate the feasibility of keyhole DTI in brain imaging, keyhole and zero-padding DTI algorithms were employed on in vivo mouse brain. The reduced phase-encoding portion, also termed as the sharing rate, was varied from 50% to 90% of the full k-space. Our data showed that zero-padding DTI resulted in decreased fractional anisotropy (FA) and decreased mean apparent diffusion coefficient (mean ADC) in white matter (WM) regions. Keyhole DTI showed a better edge preservation on mean ADC maps but not on FA maps as compared to the zero-padding DTI. When increasing the sharing rate in keyhole approach, an underestimation of FA and an over- or underestimation of mean ADC were measured in WM depending on the selected reference image. The inconsistency of keyhole DTI may add a challenge for the wide use of this modality. However, with a carefully selected directive diffusion-weighted image to serve as the reference image in the keyhole approach, this study demonstrated that one may obtain DTI indices of reduced-encoding images with high consistency to those derived with full k-space DTI.  相似文献   

9.
Proton magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI) were carried out in men with increased prostate-specific antigen (PSA) level. Forty subjects [controls (Group I) and patients (Groups II and III with PSA >20 and 4-20 ng/ml, respectively)] were investigated using endorectal coil at 1.5 T prior to transrectal ultrasound (TRUS)-guided biopsy. Metabolite ratio [citrate/(choline+creatine)] and apparent diffusion coefficient (ADC) were calculated for identical voxels. In patients, voxels that showed lower metabolite ratio showed reduced ADC in the peripheral zone (PZ) of the prostate, and voxels with increased metabolite ratio showed higher ADC. Metabolite ratios were used to predict areas of malignancy if the ratio was <1.4 and if ADC value was <1.17 x 10(-3) mm(2)/s. Patients in Group II had lower metabolite ratio and ADC in the PZ compared to controls and Group III. All 13 were positive for malignancy in MR, while 12 of 13 were positive on TRUS-guided sextant biopsy. In Group III, certain voxels of PZ that showed reduced metabolite ratio also showed lower ADC. A positive correlation was observed between metabolite ratio and ADC. MR predicted areas of malignancy in PZ in 15 of 20 patients; however, only six were positive on TRUS-guided biopsy perhaps due to high false-negative rate of TRUS-guided biopsy. Results show positive correlation between MRSI and DWI and their potential in detection of malignancy, thereby improving the diagnosis especially in patients with PSA level of 4-20 ng/ml.  相似文献   

10.
This work describes a segmented radial turbo-spin-echo technique (DW-rTSE) for high-resolution multislice diffusion-weighted imaging and quantitative ADC mapping. Diffusion-weighted images with an in-plane resolution of 700 microm and almost free of bulk motion can be obtained in vivo without cardiac gating. However, eddy currents and pulsatile brain motion cause severe artifacts when strong diffusion weighting is applied. This work explains in detail the artifacts in projection reconstruction (PR) imaging arising from eddy currents and describes an effective eddy current compensation based on the adjustment of gradient timing. Application of the diffusion gradients in all three orthogonal directions is possible without degradation of the images due to eddy current artifacts, allowing studies of the diffusional anisotropy. Finally, a self-navigation approach is proposed to reduce residual nonrigid body motion artifacts. Five healthy volunteers were examined to show the feasibility of this method.  相似文献   

11.
Magnetic Resonance Diffusion-Weighted Imaging (DWI) has been reported to be helpful for the differential diagnosis between abscesses and cystic/necrotic brain tumors. However the number of patients is still limited, and the sensitivity and specificity of the method remain to be confirmed. The primary purpose of this study was to investigate a larger sample of patients, all investigated under the same experimental conditions, in order to obtain statistically significant data. Moreover, there is no consensus about the appropriate values of b required to use to make an accurate diagnosis from DWI. The secondary purpose of this study was to determine the discriminating threshold b values for raw diffusion-weighted images and for normalized diffusion-weighted images. On the basis of 14 abscesses, 10 high-grade gliomas and 2 metastases, we show that the calculation of accurate Apparent Diffusion Coefficient (ADC) values gives a specificity rate of 100%. Without ADC calculation, we show that image normalization is required to make an accurate differential diagnosis, and we highlight the ability of DWI to discriminate between brain abscesses and cystic/necrotic brain tumors using normalized signal intensity at lower b values (503 s/mm(2)) than usual.  相似文献   

12.

Purpose

To present proton magnetic resonance spectroscopy and diffusion-weighted imaging (DWI) findings of central neurocytoma (CN).

Methods and Materials

Imaging findings of seven patients with the histopathological diagnosis of CN (five male and two female; age range, 21–28 years of age) were evaluated retrospectively. In addition to conventional magnetic resonance imaging features, we also assessed the metabolite ratios and tumor normalized apparent diffusion coefficient (NADC), which was calculated by dividing the tumor apparent diffusion coefficient (ADC) values by normal ADC. Approval from our institutional review board was obtained for this review.

Results

The tumor choline/creatine ratios were 5.17±2.38, while N-acetyl aspartate/choline and N-acetyl aspartate/creatine ratios were 0.33±0.15 and 1.84±1.38, respectively. On DWI, tumors had heterogeneous hyperintense appearances when compared with the contralateral parietal lobe white matter and tumor NADC values were 0.63±0.05.

Conclusion

Significantly increased choline/creatine and decreased N-acetyl aspartate/choline ratios with lower NADC values in CN resemble high-grade gliomas and complicate the diagnosis. Familarity its physiologic features would help to presurgical diagnosis of ventricular and exraventricular CNs.  相似文献   

13.
Reordered snapshot fast low-angle shot images with, and without, diffusion-perfusion gradients were used for the evaluation of contents of cystic ovarian lesions. Sonographically detected 51 cystic ovarian lesions (13 endometrial cysts, 17 ovarian cysts, 7 serous cystadenomas, 6 mucinous cystadenomas, 8 malignant cystic ovarian tumors) were studied. T1- and T2-weighted images, reordered snapshot fast low-angle shot images with and without diffusion-perfusion gradients (b = 106 and 0 s/mm2, respectively) were obtained. Using these images, apparent diffusion coefficients (ADCs) were calculated in the cystic contents of these lesions. Endometrial cysts and malignant cystic ovarian tumors showed lower ADC values than ovarian cysts, serous cystadenomas and mucinous cystadenomas (p < 0.02). There was no distinct ADC difference among ovarian cysts, serous cystadenomas, mucinous cystadenomas (p > 0.2). In conclusion, diffusion-weighted magnetic resonance imaging is possible to be useful to evaluate cystic contents of ovarian lesions.  相似文献   

14.
Present knowledge suggests that in glioblastoma multiforme the value of the apparent diffusion coefficient (ADC) is elevated in the solid part and hyperintense in T1, in spite of the elevated cellularity, and also in areas where peritumoral vasogenic edema is present. The purpose of our study has been to verify in vivo if the ADC increases in areas of solid tumor because of an increased presence of edema, like it happens in areas surrounding the tumor. Sixteen patients with histologically verified glioblastoma multiforme underwent a magnetic resonance (MR) examination with sequences: T1-weighted pre and post contrast, diffusion-weighted at b = 0 and b = 1000 s/mm(2), perfusion-weighted. One hundred sixty-five regions of interest (ROI) have been obtained for all set of patients. In each ROI we have estimated 4 parameters: ADC, intensity of T2-signal normalised to the white matter (SI(T2W)(n)), regional cerebral blood volume (rCBV), T1-signal enhancement (E%). With the SI(T2W)(n) the presence of edema was estimated. For each pair of measured parameters a statistical test of linear regression on the set of all ROI was made. A directed linear correlation between: ADC and SI(T2W)(n) (p 相似文献   

15.
Prostate cancer detection using diffusion-weighted imaging is highly affected by the accuracy of the apparent diffusion coefficient (ADC) values in an image. Echo planar imaging (EPI) is a fast sequence commonly used for diffusion imaging but has inherent magnetic susceptibility and chemical shift artefacts associated. A diffusion sequence that is less affected by these artefacts is therefore advantageous. The half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence was chosen. The diffusion sequences were compared in image quality, repeatability of the ADC value and the effect on the ADC value with varied b values. Eight volunteers underwent three scans of each sequence, on a 1.5-T Siemens system, using b values of 0, 150, 300, 450, 600, 750, 900 and 1000 s/mm(2). ADC maps were created to address the reproducibility of the ADC value when using two b values compared to eight b values. The ADC value using all b values with the HASTE sequence gave the best performance in all tested categories. Both sequences gave significantly different ADC mean values for two b values compared to when using eight b values (P<.05) suggesting larger error is present when using two b values. HASTE was shown to be an improvement over EPI in terms of repeatability, signal variation within a region of interest and standard deviation over the volunteer set. The improved accuracy of the ADC value in the HASTE sequence makes it potentially a more sensitive tumor detection technique.  相似文献   

16.

Purpose

To prospectively evaluate diffusion-weighted (DW) magnetic resonance (MR) imaging for differentiation of postobstructive consolidation from centrally located lung carcinomas by using apparent diffusion coefficients (ADCs).

Materials and Methods

An institutional review board approved this study; informed consent was obtained from patients. Forty-nine consecutive patients (3 women, 46 men; mean age, 63.6 years; age range, 42–85 years) with lung carcinoma underwent DW MR imaging. Forty patients had central and nine patients had peripheral lung carcinomas. ADC of each lung carcinoma was calculated from DW MR images obtained with two different b values (0, 1000 s/mm2).In the final study group including 27 patients with central lung carcinoma accompanying distal lung consolidation (mean age, 67.2 years; 3 women, 24 men), ADCs of lung carcinomas were statistically compared among cytologic/histologic types and accompanying postobstructive consolidations. Unpaired t test was used for measurable variables with normal distribution, and Kruskal–Wallis variance analysis and Mann–Whitney U tests were used for the measurable variables without normal distribution.

Results

There was no significant difference between mean ADC values of all types of carcinomas (P=.302) and also between mean ADC values of central (1.91 ± 0.7×10−3 mm2/s) and peripheral carcinomas (1.58 ± 0. 6×10−3 mm2/s) (P=.224). The mean ADC value for the masses of central lung carcinoma with postobstructive consolidations was 1.83 ± 0.75×10−3 mm2/s, and for consolidation was 2.50 ± 0.76×10−3 mm2/s. ADC of central carcinoma masses was significantly lower than that of postobstructive consolidations (P=.003).

Conclusions

ADC values of central lung carcinoma masses appear to be lower than accompanying postobstructive consolidations. ADC values could be considered useful as a differentiating parameter among central lung carcinomas and accompanying postobstructive consolidations.  相似文献   

17.
PurposeTo evaluate the diagnostic performance of a multiparametric approach to breast lesions including apparent diffusion coefficient (ADC) from diffusion-weighted images (DWI), maximum slope (MS) from ultrafast dynamic contrast enhanced (UF-DCE) MRI, lesion size, and patient's age.Materials and methodsIn total, 96 lesions (73 malignant, 23 benign) were evaluated. UF-DCE MRI was acquired using a prototype 3D-gradient-echo volumetric interpolated breath-hold examination (VIBE) with compressed sensing. Images were obtained up to 1 min after gadolinium injection. MS was calculated as the percentage relative enhancement/s. An ADC map was automatically generated from DWI at b = 0 and b = 1000 s/mm2. MS and ADC values were measured by two radiologists independently. Interrater agreement was evaluated using intraclass correlation coefficients. Univariate and multivariate logistic regression analyses were performed using MS, ADC, lesion size, and the patient's age. The parameters of the prediction model were generated from the results of the multivariate logistic regression analysis. Area under the curve (AUC) was used to compare diagnostic performance of the prediction model and each parameter.ResultsInterrater agreements on MS and ADC were excellent (ICC 0.99 and 0.88, respectively). MS, ADC, and patient's age remained as significant parameters after univariate and multivariate logistic regression analysis. The prediction model using these significant parameters yielded an AUC of 0.90, significantly higher than that of MS (AUC 0.74, p = 0.01). The AUCs of ADC, MS, patient's age were 0.87, 0.74 and 0.73, respectively.ConclusionsA multiparametric model using ADC from DWI, MS from UF-DCE MRI, and patient's age showed excellent diagnostic performance, with greater contribution of ADC. Combining DWI and UF-DCE MRI might reduce scanning time while preserving diagnostic performance.  相似文献   

18.
Diffusion-weighted echo planar imaging (DW-EPI) suffers from geometric distortion due to low phase-encoding bandwidth. Read-out segmented echo planar imaging (RS-EPI) reduces distortion but residual distortion remains in extreme cases. Additional corrections need to be applied, especially for radiotherapy applications where a high degree of accuracy is needed. In this study the use of magnetic field map corrections are assessed in DW-EPI and RS-EPI, to reduce geometric uncertainty for MRI-guided radiotherapy applications. Magnetic field maps were calculated from gradient echo images and distortion corrections were applied to RS-EPI images. Distortions were assessed in a prostate phantom by comparing to the known geometry, and in vivo using a modified Hausdorff distance metric using a T2-weighted spin echo as ground truth. Across 10 patients, field map-corrected RS-EPI reduced maximum distortion by 5 mm on average compared to DW-EPI (σ = 1.9 mm). Geometric distortions were also reduced significantly using field mapping with RS-EPI, compared to RS-EPI alone (p ≤ 0.05). The increased geometric accuracy of these techniques can potentially allow diffusion-weighted images to be fused with other MR or CT images for radiotherapy treatment purposes.  相似文献   

19.

Objective

The purpose of this study was to assess the influence of liver cirrhosis and portal hypertension on diffusion coefficients of the spleen.

Material and Methods

We retrospectively evaluated 50 patients with liver cirrhosis and 50 patients without any history of liver disease who underwent magnetic resonance imaging of the upper abdomen, including echo planar diffusion-weighted imaging using b values of 50, 300 and 600 mm2/s. Spleen apparent diffusion coefficient (ADC), liver ADC, muscle ADC and normalized spleen ADC (defined as the ratio of spleen ADC to muscle ADC) were compared between cirrhotic patients and patients in the control group and correlated with Child–Pugh stages. Reproducibility was assessed by measuring interclass correlation coefficient (n = 11). Additionally, in eight patients, ADC measurements were performed 1 day before and 3 days after transjugular intrahepatic portosystemic shunt (TIPSS) implantation.

Results

Compared with control subjects, patients with cirrhosis and portal hypertension had significantly higher spleen ADCs (P = .0001). There was a statistically significant correlation between Child–Pugh grade and spleen ADC (Pearson correlation coefficient, observer 1 r = 0.6, P = .0001; observer 2 r = 0.5, P = .0001). After TIPSS implantation, we observed a reduction in spleen ADC values. Spleen ADC measurements showed a high reproducibility (interclass correlation coefficient 0.75, P = .001).

Conclusion

Our data suggest that different stages of liver cirrhosis and portal hypertension correlate with ADC values of the spleen. Furthermore, ADC values of the spleen decrease after TIPSS implantation. Further studies are required to understand the potential clinical values of these observations.  相似文献   

20.

Purpose

To predict malignancy of mediastinal lymphadenopathy with diffusion-weighted imaging.

Material and methods

A prospective study was conducted on 35 patients with mediastinal lymphadenopathy (28 malignant and seven benign nodes). They underwent echoplanar diffusion-weighted magnetic resonance imaging of the mediastinum with b-factors of 0, 300 and 600 s/mm2. The apparent diffusion coefficient (ADC) values of the mediastinal lymph nodes were calculated. The ADC values were correlated with the biopsy results and statistical analysis was done. A value of P<.05 was considered significant.

Results

The mean ADC value of malignant mediastinal lymphadenopathy (1.06±0.3×10−3 mm2/s) was significantly lower (P=.001) than that of benign lymphadenopathy (2.39±0.7×10−3 mm2/s). There was an insignificant difference in the ADC values between metastatic and lymphomatous mediastinal lymph nodes (P=.32) as well as within benign nodes (P=.07). When an ADC value of 1.85×10−3 mm2/s was used as a threshold value for differentiating malignant mediastinal nodes from benign nodes, the best results were obtained with an accuracy of 83.9%, a sensitivity of 96.4%, a specificity of 71.4%, a negative predictive value of 95.2% and a positive predictive value of 77.1%. The area under the curve was 0.98.

Conclusion

Diffusion weighted magnetic resonance imaging is a promising noninvasive imaging modality that can be used for characterization of mediastinal lymphadenopathy and differentiation of malignant from benign mediastinal lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号