首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO(2) (2+) dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO(2) (2+) ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from approximately 38.7 to approximately 41 eV above the ground state of neutral CO(2) has been observed in the experimental time window of approximately 0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO(+)+O(+) formation in indirect dissociative double photoionization below the threshold for formation of CO(2) (2+). The threshold for CO(+)+O(+) formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements.  相似文献   

2.
The double photoionization of CF(3)I and the electronic structure and the dissociation dynamics of the CF(3)I(++) dication have been investigated using large ab initio calculations and coincidence techniques. The double photoionization spectrum of CF(3)I consists of a continuous background with a number of narrow bands superimposed. The spectrum is attributed here to the population of groups of close lying electronic states interacting mutually by spin-orbit, spin-spin, and rovibronic couplings. At energies near the vertical double ionization threshold, CF(3) (+)+I(+) ionic fragments are produced. At higher energies, a very specific dissociation with double charge retained on one fragment, CF(3)I(++)-->CF(2)I(++)+F becomes dominant and is attributed to a specific group of dication electronic states.  相似文献   

3.
The double photoionization spectrum of SO2 has been measured using the TOF-PEPECO technique and contains one resolved band. Detailed electronic structure calculations and experimental comparisons allow the resolved band to be identified as the A 1A2 state of the SO2(2+) dication, with its adiabatic ionization energy at 35.284+/-0.02 eV. According to the most accurate calculations, the ground state level of SO2(2+) must be located near 33.48 eV, well below the range accessed by vertical transitions from neutral SO2. Transient SO2 (2+) molecules detected by mass spectrometry may be identified either as the sharp levels of the A 1A2 state or as ground state levels populated by nonvertical ionization pathways.  相似文献   

4.
在入射电子能量2500eV、能量分辨200meV的条件下测量了一氧化二氮分子在7.8~24.5 eV的光学振子强度密度谱和光电离质谱,报道了N2O+、NO+、O+、N2+和N+等离子在较高能量分辨下的部分光学振子强度密度,首次给出了一氧化二氮分子在13.0~21.0 eV能区中性解离的振子强度密度.并在对这些数据进行分析的基础上阐述了一氧化二氮分子超激发态的不同退激发道的竞争过程.  相似文献   

5.
The UV absorption spectrum of pentacene in hexane solution and the diffuse UV reflectance spectrum for its solid sample have been obtained. A spectral band due to structural features resulting from intermolecular interactions in the solid state was detected for the solid sample at the energy of 1.51 eV. The types of detected electronically excited states for pentacene have been determined, and dominating electronic configurations have been interpreted using TD B3LYP/6-31G quantum-chemical calculations. The types of pentacene occupied and unoccupied molecular orbitals involved in electronic transitions have been determined from published photoelectron spectroscopy data for pentacene with the preliminary assignment of the relevant photoionization bands using the B3LYP/6-31G calculation method.  相似文献   

6.
The formation and fragmentation of the molecular dication C(7)H(8)(2+) from cycloheptatriene (CHT) and the bimolecular reactivities of C(7)H(8)(2+) and C(7)H(6)(2+) are studied using multipole-based tandem mass spectrometers with either electron ionization or photoionization using synchrotron radiation. From the photoionization studies, an apparent double-ionization energy of CHT of (22.67 ± 0.05) eV is derived, and the appearance energy of the most abundant fragment ion C(7)H(6)(2+), formed via H(2) elimination, is determined as (23.62 ± 0.07) eV. Analysis of both the experimental data as well as results of theoretical calculations strongly indicate, however, that an adiabatic transition to the dication state is not possible upon photoionization of neutral CHT and the experimental value is just considered as an upper bound. Instead, an analysis via two different Born-Haber cycles suggests (2)IE(CHT) = (21.6 ± 0.2) eV. Further, the bimolecular reactivities of the C(7)H(n)(2+) dications (n = 6, 8), generated via double ionization of CHT as a precursor, with xenon as well as nitrogen lead, inter alia, to the formation of the organo-xenon dication C(7)H(6)Xe(2+) and the corresponding nitrogen adduct C(7)H(6)N(2)(2+).  相似文献   

7.
The double photoionization of HI molecules has been investigated using vacuum ultraviolet synchrotron radiation in the energy range between 27 and 35 eV. The product ions have been detected by the use of time-of-flight mass spectrometry and the threshold energy for HI2+ and H+ + I+ formation has been determined. These results have been interpreted by the use of a theoretical model which has been previously applied by us to HBr2+ and HCl2+. On the basis of the reliability of such a model, an assessment of the systematic trends of the bond features along the HX2+ (X=F, Cl, Br, I) homologous series is given in this paper. In particular, the increase of the stability of these dications, in their lowest electronic states, when going towards the heavier molecules, has been rationalized considering the systematic variation of the charge transfer coupling between the H-X2+ and the H+-X+ states.  相似文献   

8.
The ionization energy (IE) for ThO has been determined using photoionization efficiency and mass-analyzed threshold ionization measurements. An IE of 6.6038(12) eV was obtained, which was appreciably higher than the result from previous appearance potential measurements [6.1(1) eV]. The revised IE is 0.3 eV greater than that of atomic Th, indicating that neutral ThO is more tightly bound than ThO(+). The one-color two-photon resonant ionization spectrum of ThO was examined in the range of 315-370 nm. Rotationally resolved bands were recorded for three new electronic states (designated as E('),F('), and G(')). In addition, transitions to the A(')(v=1,2,3) levels and the N(v=2) level were observed for the first time. Ligand field theory predictions [L. A. Kaledin, J. E. McCord, and M. C. Heaven, J. Mol. Spectrosc. 164, 27 (1994)] were used to propose configurational assignments for 20 electronically excited states.  相似文献   

9.
Although formaldehyde, H?CO, has been extensively studied there are still several issues not-well understood, specially regarding its dynamics in the VUV energy range, mainly due to the amount of nonadiabatic effects governing its dynamics. Most of the theoretical work on this molecule has focused on vertical excitation energies of Rydberg and valence states. In contrast to photodissociation processes involving the lowest-lying electronic states below 4.0 eV, there is little known about the photodynamics of the high-lying electronic states of formaldehyde (7-10 eV). One question of particular interest is why the (π, π*) electronic state is invisible experimentally even though it corresponds to a strongly dipole-allowed transition. In this work we present a coupled multisurface 2D photodynamics study of formaldehyde along the CO stretching and the symmetric HCH bending motion, using a quantum time-dependent approach. Potential energy curves along all the vibrational normal modes of formaldehyde have been computed using equation-of-motion coupled cluster including single and double excitations with a quadruply augmented basis set. In the case of the CO stretching coordinate, state-averaged complete active space self-consistent field followed by multireference configuration interaction was used for large values of this coordinate. 2D (for the CO stretching coordinate and the HCH angle) and 3D (including the out-of-plane distortion) potential energy surfaces have been computed for several Rydberg and valence states. Several conical intersections (crossings between potential energy surfaces of the same multiplicity) have been characterized and analyzed and a 2D 5 × 5 diabatic model Hamiltonian has been constructed. Based on this Hamiltonian, electronic absorption spectra, adiabatic and diabatic electronic populations and vibrational densities have been obtained and analyzed. The experimental VUV absorption spectrum in the 7-10 eV energy range is well reproduced, including the vibrational structure and the high irregularity in the regime of strong interaction between the (π, π*) electronic state and neighboring Rydberg states.  相似文献   

10.
Highly correlated ab initio methods were used in order to generate the potential energy curves of the electronic states of the SO(2+) dication and of the electronic ground state of the neutral SO molecule. These curves were used to predict the spectroscopic properties of this dication and to perform forward calculations of the double photoionization spectrum of SO. In light of spin-orbit calculations, the metastability of this doubly charged ion is discussed: for instance, the rovibrational levels of the X (1)Sigma(+) and A (3)Sigma(+) states are found to present relatively long lifetimes. In contrast, the other electronic excited states should predissociate to form S(+) and O(+) in their electronic ground states. The simulated spectrum shows structures due to transitions between the v=0 vibrational level of SO (X (3)Sigma(-)) and the vibrational levels below the barrier maximum of 11 of the calculated electronic states. The 2 (1)Sigma(+) electronic state of SO(2+) received further treatment: in addition to vibrational bands due to the below barrier energy levels of this electronic state, at least nine continuum resonances were predicted which are responsible for the special shape of the spectrum in this energy region. This work is predictive in nature and should stimulate future experimental investigations dealing with this dication.  相似文献   

11.
The electronic structure of (8,0) gold nanotubes have been studied using quantum field theory methods in the framework of the Hubbard model. An expression for the Fourier transform of the anticommutator Green function, the poles of which determine the energy spectrum of the system under consideration, has been derived. The energy spectrum demonstrates that the (8,0) gold nanotube has metal-like electronic structure. The peaks of the calculated density of states correspond to Van Hove singularities. The optical absorption spectrum is presented, and the energy of the first direct optical transition is 0.55 eV.  相似文献   

12.
The photoionization efficiency curves for 39,39K2 and 39,41K2 dimers excited to the B 1Πu electronic state have been measured using sequential two-photon-ionization techniques. Accurate determinations of nine photoionization thresholds yield an adiabatic ionization energy of 4.06073 ± 0.00016 eV. Autoionizing Rydberg states are assigned and analyzed. Autoionization rates are measured for several Rydberg vibronic states. The isotopic dependence of the autoionization structure is partially analyzed and molecular constants for the K+2 (2Σ+g) state are derived.  相似文献   

13.
Double-charge-transfer spectrometry was used to measure double-ionization energies to ground and electronically excited states of various chlorobenzenes. Since OH+ was the projectile ion used in these experiments, it is probable that triplet states of the dications were populated because of spin conservation in the double-electron-capture reactions which are the basis of this type of spectrometry. The lowest double-ionization energies for all the molecules studied are within ±0.3 eV of 25.9 eV, except that for 1,3-dichlorobenzene, which is at 26.6 eV. In general, double-ionization energies to three higher lying states (or groups of states) were measured for each molecule. The energies of these states are the same, within experimental uncertainties, for the three trichlorobenzenes, two tetrachlorobenzenes and pentachlorobenzene dications, suggesting that they have the same or very similar distributions of triplet-state energies.  相似文献   

14.
Absolute dipole oscillator strengths (cross section) have been obtained for valence shell photoabsorption (7–100eV) and a variety of partial photoionization (11–40 eV) processes in gaseous HBr. Partial dipole oscillator strengths are reported for the formation of the X2Π, A2Σ+ and B2Σ electronic state of HBr+ as well as the respective photoelectron branching ratios. The photoelectron binding energy spectra show clear evidence of many-body effects in photoionization to the B2Σ state of HBr+ with the ionization oscillator strength divided over many bands as predicted by many-body Green's function calculations. Partial dipole oscillator strengths are also reported for molecular ion formation as well as for all dissociative ionization processes. The measurements have been made by the dipole (e,e) (e,2e) and (e,e + ion) methods, which respectively provide quantitative measurements of photoabsorption, photoelectron spectroscopy and photoionization mass spectrometry at continuously tuneable energies. The measurements of dipole oscillator strengths for production of electronic states of HBr+ are combined with those for molecular and dissociative photoionization. These, considered together with the ionization and appearance potentials, provide a quantitative dipole breakdown picture for the ionic photofragmentation pathways of HBr in the energy region up to 40 eV.  相似文献   

15.
We report a theoretical account on the static and dynamic aspects of the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) interactions in the ground and first excited electronic states of the ethane radical cation. The findings are compared with the experimental photoionization spectrum of ethane. The present theoretical approach is based on a model diabatic Hamiltonian and with the parameters derived from ab initio calculations. The optimized geometry of ethane in its electronic ground state (1A1g) revealed an equilibrium staggered conformation belonging to the D3d symmetry point group. At the vertical configuration, the ethane radical cation belongs to this symmetry point group. The ground and low-lying electronic states of this radical cation are of 2Eg, 2A1g, 2Eu, and 2A2u symmetries. Elementary symmetry selection rule suggests that the degenerate electronic states of the radical cation are prone to the JT distortion when perturbed along the degenerate vibrational modes of eg symmetry. The 2A1g state is estimated to be approximately 0.345 eV above the 2Eg state and approximately 2.405 eV below the 2Eu state at the vertical configuration. The symmetry selection rule also suggests PJT crossings of the 2A1g and the 2Eg electronic states of the radical cation along the vibrational modes of eg symmetry and such crossings appear to be energetically favorable also. The irregular vibrational progressions, with numerous shoulders and small peaks, observed below 12.55 eV in the experimental recording are manifestations of the dynamic (E x e)-JT effect. Our findings revealed that the PJT activity of the degenerate vibrational modes is particularly strong in the 2Eg-2A1g electronic manifold which leads to a broad and diffuse structure of the observed photoelectron band.  相似文献   

16.
Using a crossed laser-molecular beam scattering apparatus, these experiments photodissociate ethyl chloride at 193 nm and detect the Cl and ethyl products, resolved by their center-of-mass recoil velocities, with vacuum ultraviolet photoionization. The data determine the relative partial cross-sections for the photoionization of ethyl radicals to form C2H5+, C2H4+, and C2H3+ at 12.1 and 13.8 eV. The data also determine the internal energy distribution of the ethyl radical prior to photoionization, so we can assess the internal energy dependence of the photoionization cross-sections. The results show that the C2H4++H and C2H3++H2 dissociative photoionization cross-sections strongly depend on the photoionization energy. Calibrating the ethyl radical partial photoionization cross-sections relative to the bandwidth-averaged photoionization cross-section of Cl atoms near 13.8 eV allows us to use these data in conjunction with literature estimates of the Cl atom photoionization cross-sections to put the present bandwidth-averaged cross-sections on an absolute scale. The resulting bandwidth-averaged cross-section for the photoionization of ethyl radicals to C2H5+ near 13.8 eV is 8+/-2 Mb. Comparison of our 12.1 eV data with high-resolution ethyl radical photoionization spectra allows us to roughly put the high-resolution spectrum on the same absolute scale. Thus, one obtains the photoionization cross-section of ethyl radicals to C2H5+ from threshold to 12.1 eV. The data show that the onset of the C2H4++H dissociative photoionization channel is above 12.1 eV; this result offers a simple way to determine whether the signal observed in photoionization experiments on complex mixtures is due to ethyl radicals. We discuss an application of the results for resolving the product branching in the O+allyl bimolecular reaction.  相似文献   

17.
A simple, new way to introduce fragile biomolecules into the gas phase via thermal vaporization of nanoparticles is described. The general utility of this technique for the study of biomolecules is demonstrated by coupling this source to tunable synchrotron vacuum ultraviolet radiation. Fragment-free photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene are detected with signal-to-noise ratios exceeding 100. The 8.0 eV photoionization mass spectrum of tryptophan nanoparticles vaporized at 373 K is dominated by a single parent ion peak that exhibits a 20-fold enhancement over the methylene indole fragment ion. The degree of dissociative photoionization of tryptophan can be precisely controlled either by the thermal energy imparted into the neutral tryptophan molecule or by the energy of the ionizing photon. The results reveal how approximately 0.5 eV changes in internal energy affect both the photoionization mass spectrum of tryptophan and the appearance energy of the daughter ion fragments. This method allows the ionization energies of glycine (9.3 +/- 0.1 eV), tryptophan (7.3 +/- 0.2 eV), phenylalanine (8.6 +/- 0.1 eV), phenylalanine-glycine-glycine (9.1 +/- 0.1 eV), and beta-carotene (<7.0 eV) molecules to be determined directly from the photoionization efficiency spectra.  相似文献   

18.
The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the dissociation threshold. The second experiment samples the metastable range, and the average ion internal energy is limited to about 0.2 eV above the threshold. In both energy domains, KERDs are found to be bimodal. Each component has been analyzed by the maximum entropy method. The narrow, low kinetic energy components display for both experiments the characteristics of a statistical, simple bond cleavage reaction: constraint equal to the square root of the fragment kinetic energy and ergodicity index higher than 90%. Furthermore, this component is satisfactorily accounted for in the metastable time scale by the orbiting transition state theory. Potential energy surfaces corresponding to the five lowest electronic states of the dissociating 1,1-C2H2F2+ ion have been investigated by ab initio calculations at various levels. The equilibrium geometry of these states, their dissociation energies, and their vibrational wavenumbers have been calculated, and a few conical intersections between these surfaces have been identified. It comes out that the ionic ground state X2B1 is adiabatically correlated with the lowest dissociation asymptote. Its potential energy curve increases in a monotonic way along the reaction coordinate, giving rise to the narrow KERD component. Two states embedded in the third photoelectron band (B2A1 at 15.95 eV and C2B2 at 16.17 eV) also correlate with the lowest asymptote at 14.24 eV. We suggest that their repulsive behavior along the reaction coordinate be responsible for the KERD high kinetic energy contribution.  相似文献   

19.
We report the anion photoelectron spectrum of I2- taken at 5.826 eV detachment energy using velocity mapped imaging. The photoelectron spectrum exhibits bands resulting from transitions to the bound regions of the X 1Sigmag+(0g+), A' 3Piu(2u), A 3Piu(1u), and B 3Piu(0u+) electronic states as well as bands resulting from transitions to the repulsive regions of several I2 electronic states: the B' 3Piu(0u-), B" 1Piu(1u), 3Pig(2g), a 3Pig(1g), 3Pig(0g-), and C 3Sigmau+(1u) states. We simulate the photoelectron spectrum using literature parameters for the I2- and I2 ground and excited states. The photoelectron spectrum includes bands resulting from transitions to several high-lying excited states of I2 that have not been seen experimentally: 3Pig(0g-), 1Pig3(1g), 1 3Sigmag-3(0g+), and the 1Sigmag-3(0u-) states of I2. Finally, the photoelectron spectrum at 5.826 eV allows for the correction of a previous misassignment for the vertical detachment energy of the I2 B 3Piu(0u+) state.  相似文献   

20.
We report on an experimental and theoretical investigation of x-ray absorption and resonant Auger electron spectra of gas phase O(2) recorded in the vicinity of the O 1s-->sigma(*) excitation region. Our investigation shows that core excitation takes place in a region with multiple crossings of potential energy curves of the excited states. We find a complete breakdown of the diabatic picture for this part of the x-ray absorption spectrum, which allows us to assign an hitherto unexplained fine structure in this spectral region. The experimental Auger data reveal an extended vibrational progression, for the outermost singly ionized X (2)Pi(g) final state, which exhibits strong changes in spectral shape within a short range of photon energy detuning (0 eV>Omega>-0.7 eV). To explain the experimental resonant Auger electron spectra, we use a mixed adiabatic/diabatic picture selecting crossing points according to the strength of the electronic coupling. Reasonable agreement is found between experiment and theory even though the nonadiabatic couplings are neglected. The resonant Auger electron scattering, which is essentially due to decay from dissociative core-excited states, is accompanied by strong lifetime-vibrational and intermediate electronic state interferences as well as an interference with the direct photoionization channel. The overall agreement between the experimental Auger spectra and the calculated spectra supports the mixed diabatic/adiabatic picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号