首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SBA-15 is a novel porous material with uniform size mesopores arranged in a regular pattern. The adjacent mesopores are connected to each other by microporous walls. The major disadvantages of these materials are that the walls are amorphous and have low thermal, hydrothermal, and mechanical stability. Recently, there have been a few attempts to either coat the walls of SBA-15 by microporous crystalline zeolites or to fabricate SBA-15 using CMK-3 in such a way that the walls are made up of ZSM-5. The present work provides a first-ever study of RMM (replicated mesoporous materials, which are SBA-15 like ordered mesoporous materials with walls made up of ZSM-5) using molecular modeling. A random orientation of the unit cells and the distribution of sizes of the supercells located at nucleation sites would be ideal to model the RMM. However, such a study would introduce more uncertainties with regard to voids between the individual supercells, noncrystalline silica, and the location of active sites where the nucleation occurs. In a simpler model studied in the present work, the walls of SBA-15 were made up of regularly arranged ZSM-5 having the same orientation. The structure was characterized by estimating the nitrogen accessible area/volume by Connolly surfaces, small-angle and wide-angle X-ray diffraction patterns, methane adsorption, and ice as a probe to study the pore structure. It was found that RMMs have significantly higher methane adsorption capacity compared to SBA-15 and the majority of methane is adsorbed in the microporous walls of RMM. Further research in the field of RMM is needed to obtain the details of zeolitic wall structure.  相似文献   

2.
Direct hydrothermal method is employed for incorporating iron into the pore structure of SBA-15. The resultant materials were analyzed by X-ray diffraction (XRD) patterns, N2 sorption isotherm and X-ray photoelectron spectroscopy (XPS). The characterizations of XRD patterns and XPS revealed that iron nanoparticles were present as highly dispersed nanoclusters in the well-ordered mesoporous channels of SBA-15. The characterizations of t-plot reveal only microporous channels of SBA-15 are confirmed to be filled with iron nanoparticles, leaving the mesopores unaffected. The supported material still maintained its ordered mesoporous structure similar to SBA-15 and possessed high surface area, large pore volume and uniform pore size.  相似文献   

3.
Structure and diffusion characterization of SBA-15 materials   总被引:4,自引:0,他引:4  
In situ formation of the micro- and mesoporous structures of SBA-15 materials was investigated. It was found that the structure is significantly different from that for cylindrical or hexagonal pores, which suggests that the SBA-15 is more complex than an array of hexagonally ordered channels. Nitrogen adsorption isotherms at 77 K provided evidence that large (primary) mesopores are accompanied by a certain amount of significantly smaller pores with a broad distribution in the micropore/small-mesopore range within the mesoporous walls of main channels. It was found that the microporosity can be controlled by the time of heating as well as the synthesis temperature. The diffusion properties of n-heptane as a probe molecule in four selected SBA-15 samples with different micropore volumes were studied by the standard zero length column technique and related to their structural characteristics. The results have shown that the diffusion process involving n-heptane at a low concentration level takes place inside the walls of main mesoporous channels and depends on the relative content of micropores. In the samples that have a relatively high content of micropores, n-heptane diffusivities are relatively low, their activation energies are high, and the process is similar to diffusion in typical microporous adsorbents, like zeolites. As the micropore content is decreased, diffusion becomes more and more controlled by secondary mesopores of the intrawall pore structure, rendering diffusion faster and activation energies lower.  相似文献   

4.
ZSM-5 monolith of uniform mesoporous channels   总被引:6,自引:0,他引:6  
A ZSM-5 monolith of uniform mesopores(meso-ZSM-5) was synthesized with the template method using carbon aerogel of uniform mesopores of great pore volume. The pore size distribution determined by N2 adsorption showed the presence of mesopores with an average pore width of 11 nm and micropores with an average pore width of 0.51 nm. Field emission scanning electron micrograph observation revealed the presence of uniform mesopores. X-ray diffraction and FT-IR provided evidence that the synthesized meso-ZSM-5 monolith has a highly crystalline ZSM-5 structure.  相似文献   

5.
Hexagonally structured mesoporous carbons C15 and CMK-5 and cubically structured carbon C48 were synthesized using ordered silica SBA-15 and MCM-48 as templates and carbon precursors of different structures. The surfaces of these ordered carbons were chemically functionalized by employing an approach, in which the selected diazonium compounds were in situ generated and reacted with the carbon frameworks of the mesoporous carbons. The aromatic organic molecules containing chlorine, ester, and alkyl groups were covalently attached to the surface of these ordered mesoporous carbons. The presence of functional groups on the modified carbons was confirmed with Fourier transform infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption. The BET-specific surface area and the pore width of ordered carbons were significantly reduced, whereas the primary structure of these ordered carbons and their unit cells were intact. Basically, the density of grafted functional groups is related to the specific surface area of the sample, particularly the surface area of mesopores. The surface functionalization reaction takes place only on the external surface of carbon C15, while it occurs on both of the internal and external surface of CMK-5 carbon with the nanopipe structure. The presence of the micropores in CMK-5 carbon should be responsible for its lower grafting density because the small micropores are inaccessible in the reaction. It was also proposed that the preferred adsorption/reaction in C48 may be related to the observed unsymmetrical degradation of the XRD patterns for the functionalized C48 samples. The chemical modification process considerably reduced the primary mesopores in these ordered carbons by approximately 1-1.5 nm, affording carbons with micropores in the cases of C15 and C48, and mixed micropores and small mesopores in the case of CMK-5. A grafting density of approximately 0.9-1.5 micromol/m(2) was achieved under current research.  相似文献   

6.
We have carried out a comparative study of matrix carbonization of some organic precursors (sucrose, polydivinylbenzene, polyphenol-formaldehyde, polyacrylonitrile, acetonitrile) in SBA-15 and KIT-6 silica mesoporous molecular sieves. We have shown that carbon mesoporous molecular sieves of the CMK-8 type, obtained in KIT-6 mesopores, have better adsorption characteristics due to the features of the three-dimensional cubic structure, the larger pore volume and thickness of the walls of the framework. The maximum micropore volume is observed in CMK-3 and CMK-8, obtained by carbonization of polyphenol-formaldehyde and polydivinylbenzene, while the greatest specific surface area is observed on carbonization of sucrose, where the maximum hydrogen adsorption capacity is achieved at a level of ∼1.4 wt.% (77 K, 1 atm). We show that the mesopore surface coverage by hydrogen in carbon mesoporous molecular sieves increases as the degree of graphitization increases.  相似文献   

7.
A novel hybrid material with microporous structure was fabricated from SBA-15 with mesopores via silane modification and hydrolysis. Two kinds of pores with diameters of 6.5 and 1.9 nm were found in the hybrid material. Compared to that of SBA-15, the surface area of the hybrid material increased from 395.9 m2/g to 667.4 m2/g while its porous volume decreased. The new hybrid material was found to have high efficiency in removing NaCl from solution, and the maximum adsorption capacity of it was ca. 517.5 mg/g.  相似文献   

8.
Probing the mesopore architecture in mesoporous zeolites is of importance for large scale applications of the materials. In this work, the adsorption and diffusion of mesitylene with larger molecule size in mesoporous ZSM-5 zeolites were carried out, in order to acquaint the availability and interconnectivity of mesopores in zeolite crystals. The comparisons of the shape of adsorption isotherms and the mesopore volume calculated from mesitylene and N2 adsorption in mesoporous ZSM-5 zeolites with different mesoporosities can be used to discriminate two cases of mesopores: accessible mesopores connected to external surface of the zeolite crystals and non-accessible meso-voids that are occluded in the microporous matrix. Furthermore, the effective diffusivity and activation energy of mesitylene in mesoporous ZSM-5 extracted from ZLC desorption curves as a function of mesopore volume calculated from mesitylene adsorption reveal the enhancement of mesopore interconnectivity to molecule diffusion in zeolite crystals.  相似文献   

9.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

10.
Micropore modification of zeolites with transition-metal oxides   总被引:1,自引:0,他引:1  
The micropores of USY and ZSM-5 zeolites were modified with the transition-metal oxides, such as Fe2O3, MoO3 and V2O5. The structures of the modified samples were characterized by XRD and the physical features were determined by N2 adsorption method. The results show that the transition-metal oxides can diffuse well into the micropores of zeolites. The surface area, micropore area, pore volume and typical pore diameter of the modified samples change respectively, and the change might result in a novel process for the design of the shape-selective catalysts and special adsorbents.  相似文献   

11.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

12.
Plugged hexagonal templated silica (PHTS) materials are synthesized using a high TEOS/EO(20)PO(70)EO(20) ratio in the SBA-15 synthesis. This generates internal microporous nanocapsules or plugs in part of the channels, which could be inferred from the two-step desorption branch. These materials exhibit a tunable amount of open and plugged pores and a very high micropore volume (up to 0.24 mL/g) and are more stable than the conventional micellar templated structures known so far. In this study the adsorption properties of PHTS are investigated and compared to those of its plug-free analogue SBA-15. For this purpose nitrogen, n-hexane, n-heptane, c-hexane, 3-methylpentane, 1-hexene, and water were adsorbed on SBA-15 and PHTSs with a different ratio of open and plugged mesopores. The adsorption of n-hexane, c-hexane, n-heptane, and 3-methylpentane on SBA-15 and PHTS-A demonstrated that the presence of the plugs had an effect on the uptake of adsorbate in the low relative pressure region, the position of the capillary condensation step, and the total adsorbed amount of adsorbate. The results showed that n-heptane and 3-methylpentane cannot access part of the micropore system of SBA-15 and PHTS-A. Adsorption of c-hexane and n-hexane on PHTS-A indicated that not only the kinetic diameter but also the shape of the molecule is an important factor for being able to be adsorbed into the micropores or past the plugs. Moreover, these two adsorbates were the most efficient in filling up the available pore volume. From the adsorption of n-hexane on PHTSs with a different ratio of open and plugged pores, it was concluded that the size of the plugs differed, which depends on the synthesis conditions. Water adsorption isotherms proved SBA-15 and PHTS-B to be more hydrophobic than PHTS-A. n-Hexane, 1-hexene, and toluene were adsorbed on SBA-15 and the PHTSs to investigate the influence of the polarity of the adsorbate. The isotherms showed higher uptakes for polar adsorbates on more hydrophobic materials and vice versa.  相似文献   

13.
Aqueous dye adsorption on ordered mesoporous carbons   总被引:1,自引:0,他引:1  
Ordered mesoporous carbons (OMCs) with varying pore size, and microporous carbon, CFY, were synthesized using ordered mesoporous silica SBA-15 and NaY zeolite as hard templates, respectively. N(2) adsorption tests show that the synthesized OMCs possess abundant mesopores and centralized mesopore distribution. Methylene blue (MB) and neutral red (NR) were used as probe molecules to investigate their adsorption behaviors on OMCs and CFY. As evidenced by adsorption tests, the volume of mesopores of which the pore size is larger than 3.5 nm is a crucial factor for the adsorption capacity and adsorption rate of MB on OMCs. However, the most probable pore diameter of OMCs was found to be vital to the adsorption capacity and adsorption rate of NR. Theoretical studies show that the adsorption kinetics of MB and NR on OMCs can be well depicted by using pseudo-second-order kinetic model.  相似文献   

14.
The equilibrium and dynamic adsorption data of H(2) and D(2) on different micro- and mesoporous adsorbents with orderly structure including 3A, 4A, 5A, Y, and 10X zeolites; carbon CMK-3; silica SBA-15; and so forth were collected. Critical effect of the nanodimension of adsorbents on the adsorption behavior of hydrogen and its isotopes is shown. The highest adsorption capacity was observed at pore size 0.7 nm, but equal or even larger isotope difference in the equilibrium adsorption was observed at larger pore sizes, whereas the largest isotope difference in the dynamic adsorption was observed at 0.5 nm. The adsorption rate of D(2) is larger than that of H(2) in microporous adsorbents, but the sequence could be switched over in mesoporous materials. Linear relationship was observed between the adsorption capacity for hydrogen and the specific surface area of adsorbents although the adsorbents are made of different material, which provides a convincing proof of the monolayer mechanism of hydrogen adsorption. The linear plot for microporous adsorbents has a larger slope than that for mesoporous adsorbents, which is attributed to the stronger adsorption potential in micropores.  相似文献   

15.
Several nanoporous aluminophosphates (AlPOs) have been used to analyze the effect of pore diameter on the hydrogen adsorption characteristics. The heat of adsorption and adsorption capacity per unit micropore volume increase with decreasing pore size. AlPOs with smaller micropores favorably adsorb hydrogen at relatively low pressures. This work demonstrates that small pore size and large micropore volume are beneficial for high hydrogen uptake.  相似文献   

16.
Using numerical and analytical methods, a model for microporous carbon adsorbents with slit-shaped pores of different widths was developed. Such pores are formed during activation procedure by the removal of the hexagonal carbon layers burnt out in a graphite-like crystallites. Dubinin’s theory of volume filling of micropores was used to calculate methane adsorption equilibria on these model adsorbents. Isobaric dependences of methane adsorption on pore width, specific micropore volumes, and the specific surface were plotted in the range of pressures from 1 to 10 MPa. It was found that the isobaric adsorption curves had a maximum the position of which depends on both the structural-energy characteristics of the adsorbent and thermodynamic conditions chosen to operate the adsorption system. As pressure increased, the maximum of adsorption shifts to the porous systems with wider pores and larger micropore volume.  相似文献   

17.
ZSM-5-SBA-15复合分子筛制备及甲苯甲醇烷基化性能研究   总被引:1,自引:0,他引:1  
采用后合成法制备了ZSM-5-SBA-15复合分子筛,通过XRD、FT-IR、BET、NH3-TPD及吡啶红外等手段表征催化剂的性质。结果表明,ZSM-5-SBA-15既具有微孔结构又具有介孔结构。吡啶吸附和NH3吸脱附实验结果表明,ZSM-5微孔分子筛的引入使SBA-15介孔分子筛的酸性增强,但与ZSM-5相比,ZSM-5-SBA-15复合分子筛的酸性位没有改变,酸强度有一定的减弱。用固定床评价了该复合分子筛甲苯甲醇烷基化反应的催化性能。结果表明,与常规ZSM-5相比,ZSM-5-SBA-15表现出了较高的对位选择性。  相似文献   

18.
The distribution of the copper-containing component in the pore volume of zeolite ZSM-5 has been investigated by H2 and N2 adsorption at 77 K and IR spectroscopy. Samples were synthesized by ion exchange and incipient wetness impregnation. Copper-containing clusters are mostly located on the surface of the mesopores formed by packed zeolite nanocrystallites. This causes partial blocking of the volume of microporous channels for N2 molecules, but these channels remain accessible for H2 molecules. It has been deduced that no considerable amount of copper located in the structural channels of the zeolite. According to IR spectroscopic data, the sorption of copper ions in the Cu/ZSM-5 catalysts takes place on extraframe-work aluminum, which forms Al-OH-Al bridges and terminal Al-OH groups, and on terminal Si-OH groups located on the zeolite crystal surface.  相似文献   

19.
The distribution of copper- and nickel-containing components in the pore space of HZSM-5 zeolite was quantitatively studied. It was found that the detailed distribution of a modifier in the micropore and mesopore volumes of the zeolite depends on both the chemical nature of the modifier and the conditions of supporting and the regime of M2+ polycondensation in the pore space of the zeolite. The experimental data on the low-temperature adsorption of nitrogen on Cu(n)ZSM-5 catalysts can be interpreted as the result of the partial filling of the zeolite micropore space (10 vol %) and the finest mesopores with D < 3 nm with the modifier. In the case of Ni(n)ZSM-5 catalysts, the penetration of the modifier into zeolite channels (micropores) in detectable amounts was not found, and it was arranged in mesopores on the surface of zeolite crystallites. The reason for differences between modifier distributions in the pore structure of the zeolite was explained from the standpoint of different structures of copper and nickel polyhydroxo complexes in impregnating solutions after polycondensation. It was found that, in the Cu(n)ZSM-5 and Ni(n)ZSM-5 catalysts, the modifier component contained copper and nickel only in a doubly charged state and mainly octahedral oxygen environments. In this case, three-dimensional nanoparticles or coarsely dispersed particles of CuO were not detected in the pore space of the support, whereas the presence of a small amount of sufficiently large NiO crystals with a coherent-scattering region of 80–100 nm was detected in Ni(n)ZSM-5, and these crystals occurred on the surface of zeolite crystals. It was found that the apparent density of a copper-or nickel-containing component arranged in the pore space of the zeolite was lower than the density of the bulk CuO and NiO phases by a factor of ~3 and 4, respectively, because of the size effect.  相似文献   

20.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6, 同时通过改变水热温度制备了不同孔径大小的SBA-15, 并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段, 对其介孔结构进行了表征. 以正丁醛为探针分子, 考察了其对有机醛的吸附, 并与Y-沸石的吸附性能做了对比. 结果表明, 材料的介孔比表面积与其对正丁醛的吸附量成正比, 吸附等温线符合Langmuir 模型, 属于单层吸附, 具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1). 最后将SBA-15添加到卷烟滤嘴中, 实验结果表明, SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号