首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nuclei. At magnetic fields greater than approximately 1 T, dipolar relaxation does not result in a useful enhancement and therefore the conventional wisdom is that DNP should not work in solutions at high magnetic fields. However, scalar relaxation due to time-dependent scalar couplings has a different magnetic field dependence and can lead to substantial OE enhancements. At room temperature and at a magnetic field of 5 T (211 MHz for protons, 140 GHz for electrons), we have observed that scalar relaxation between electrons and nuclei results in NMR signal enhancements of 180, 42, -36, and 8, for 31P, 13C, 15N, and 19F, respectively.  相似文献   

2.
According to various health organizations, the global consumption of salt is higher than recommended and needs to be reduced. Ideally, this would be achieved without losing the taste of the salt itself. In order to accomplish this goal, both at the industrial and domestic levels, we need to understand the mechanisms that govern the final distribution of salt in food. The in-silico solutions in use today greatly over-simplify the real food structure. Measuring the quantity of sodium at the local level is key to understanding sodium distribution. Sodium magnetic resonance imaging (MRI), a non-destructive approach, is the ideal choice for salt mapping along transformational process. However, the low sensitivity of the sodium nucleus and its short relaxation times make this imaging difficult. In this paper, we show how sodium MRI can be used to highlight salt heterogeneities in food products, provided that the temporal decay is modeled, thus correcting for differences in relaxation speeds. We then propose an abacus which shows the relationship between the signal-to-noise ratio of the sodium MRI, the salt concentration, the B0 field, and the spatial and temporal resolutions. This abacus simplifies making the right choices when implementing sodium MRI.  相似文献   

3.
A novel NMR method characterizes slow motions in proteins by multiple refocusing of double- and zero-quantum coherences of amide protons and nitrogen-15 nuclei. If both nuclei experience changes in their isotropic chemical shifts because of internal motions on slow time scales (mus - ms), this leads to a difference in the relaxation rates of double- and zero-quantum coherences. This is due to CSM/CSM (chemical shift modulation) cross-correlation effects that are related to the well-known chemical exchange contribution Rex to the decay rate R2 = 1/T2 of nitrogen-15 nuclei. The CSM/CSM contributions can be distinguished from other mechanisms through their dependence on the repetition rate of a Carr-Purcell-Meiboom-Gill (CPMG) multiple refocusing sequence. In ubiquitin, motional processes can be identified that could hitherto not be observed by conventional CPMG nitrogen-15 NMR.  相似文献   

4.
High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.  相似文献   

5.
We study the decay of multiple quantum (MQ) NMR coherences in systems with the large number of equivalent spins. As being created on the preparation period of the MQ NMR experiment, they decay due to the dipole-dipole interactions (DDI) on the evolution period of this experiment. It is shown that the relaxation time decreases with the increase in MQ coherence order (according to the known results) and in the number of spins. We also consider the modified preparation period of the MQ NMR experiment [G. A. Alvarez and D. Suter, Phys. Rev. Lett. 104, 230403 (2010)] concatenating the short evolution periods under the secular DDI Hamiltonian (the perturbation) with the evolution period under the nonsecular averaged two-spin/two-quantum Hamiltonian. The influence of the perturbation on the decoherence rate is investigated for the systems consisting of 200-600 equivalent spins.  相似文献   

6.
We report on the use of optical Faraday rotation to monitor the nuclear-spin signal in a set of model (19)F- and (1)H-rich fluids. Our approach integrates optical detection with high-field, pulsed NMR so as to record the time-resolved evolution of nuclear-spins after rf excitation. Comparison of chemical-shift-resolved resonances allows us to set order-of-magnitude constrains on the relative amplitudes of hyperfine coupling constants for different bonding geometries. When evaluated against coil induction, the present detection modality suffers from poorer sensitivity, but improvement could be attained via multipass schemes. Because illumination is off-resonant i.e., the medium is optically transparent, this methodology could find extensions in a broad class of fluids and soft condensed matter systems.  相似文献   

7.
The synthesis and relaxivity properties of a new dendrimeric Gd chelate, Gd-TREN-bisHOPO-TAM-Asp-Asp2-12OH, are presented. The macromolecule demonstrates improved water solubility due to its 12 terminal hydroxyl groups and improved relaxivity due to its optimal water exchange rate and slower molecular tumbling. Unprecedented high relaxivity (r1p = 18 mM-1 s-1) is observed at high magnetic field (90 MHz), an important advance in the development of contrast agents for the next generation of MRI scanners.  相似文献   

8.
9.
The solid-state reaction between SrCO3 and -FeOOH was investigated by means of thermal analysis, X-ray diffraction, electron microscopy and magnetic measurements. The high reactivity of this mixture is discussed in comparison with that of the mixture of SrCO3 and -Fe2O3.  相似文献   

10.
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems.  相似文献   

11.
The direct reaction field (DRF ) method, developed to incorporate the effects of a (large) semiclassical environment into the Hamiltonian of a quantum mechanical system, is briefly reviewed. It is shown that the DRF method behaves—at least—like a supermolecule SCF calculation. With the water dimer as an example, the similarity with the SCF procedure is demonstrated, and an application to the interaction between the active site of papain and the remaining 3000 or so atoms of this protein shows the inadequacy of dielectric constant models and the necessity of including atomic polarizabilities in model force fields.  相似文献   

12.
《Sensors and Actuators》1986,9(3):213-221
A new geometry for the split-drain MAGFET is proposed. The behavior of the device was studied over a wide range of temperatures. A novel method of interconnecting many NAGFETs was shown to improve transduction.  相似文献   

13.
A novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N',N'-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced. The water exchange rate, k(ex)(298)=9.0+/-3.0 s(-1) is around twice as high as k(ex)(298) of the commercial [Gd(DTPA)(H(2)O)](2-) and comparable to those on analogous Gd(3+)-DTTA chelates. Despite the relatively small size of the complex, the rotational dynamics had to be described with the Lipari-Szabo approach, by separating global and local motions. The difference between the local and global rotational correlation times, tau(lO)(298)=170+/-10 ps and tau(gO)(298)=540+/-100 ps respectively, shows that [Gd(3)L(H(2)O)(6)](3-) is not fully rigid; its flexibility originates from the CH(2) linker between the benzene core and the poly(amino carboxylate) moiety. As a consequence of the two inner-sphere water molecules per Gd(3+), their close to optimal exchange rate and the appropriate size and limited flexibility of the molecule, [Gd(3)L(H(2)O)(6)](3-) has remarkable proton relaxivities when compared with commercial contrast agents, particularly at high magnetic fields (r(1)=21.6, 17.0 and 10.7 mM(-1)s(-1) at 60, 200 and 400 MHz respectively, at 25 degrees C; r(1) is the paramagnetic enhancement of the longitudinal water proton relaxation rate, referred to 1 mM concentration of Gd(3+)).  相似文献   

14.
Quantum beats and fluorescence decays of the vibrationless S1 state of jet-cooled pyrazine have been studied as a function of magnetic field. Fourier analysis of the modulated portions of these decays has yielded results which are consistent with first- and second-order Zeeman effects occurring in the excited state. An increase in the number of triplets states effetively coupled to the singlet manifold with increasing magnetic field is discussed in terms of Zeeman interactions  相似文献   

15.
16.
Zeolite-intercalated semiconductor quantum dots (QDs) have long been proposed to give very high third-order nonlinear optical (3NLO) responses. However, measurements of their 3NLO responses have not been possible due to the lack of methods to prepare optically transparent QD-incorporating zeolite films supported on optically transparent substrates and to confine QDs only within zeolite interiors. We found that the zeolite-Y films grown on indium-tin-oxide-coated glass plates (Ygs) remain firmly bonded to the substrates during ion exchange with Pb2+ ions, drying, and formation of PbS QDs by treating Pb2+ ions with H2S. A series of Ygs encapsulating different numbers (n = 0, 8, 14, 23, and 33) of PbS in a unit cell [(PbS)n-Yg] were prepared. The PbS QDs were expelled by adsorbed moisture to the external surfaces, and the expelled QDs formed large QDs. Coating of the (PbS)n-Ygs with octadecyltrimethoxysilane results in effective confinement of the QDs within the internal pores. The zeolite-encapsulated PbS QDs showed remarkably high 3NLO activities at 532 and 1064 nm which are unparalleled by other PbS QDs dispersed in other matrixes.  相似文献   

17.
Molecular quantum beats are shown for the case of biacetyl, to vary strongly under the influence of weak magnetic fields. Values for dephasing constants for a gas-phase molecular system were determined. Information on sub-Doppler level splittings in the intersystem-crossing process is obtained.  相似文献   

18.
19.
20.
A new phenomenon has been detected in the time-resolved electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pairs in photosynthetic reaction center proteins. The observed effects result from both increased resolution and orientational selectivity provided by high magnetic field EPR and are manifest as specific, derivative-type lines in the ENDOR spectrum. Importantly, the positions and amplitudes of these lines contain information on the interaction of a particular nucleus with both correlated electron spins. Thus, spin density delocalization in the protein environment between the donor and acceptor in the SCRP can be revealed via SCRP ENDOR, providing a unique opportunity to probe the electron-transfer pathways in natural and artificial photosynthetic assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号