首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
High-resolution transmission (HRTEM) and high-resolution scanning electron microscopy as well as atomic force microscopy (AFM), X-ray diffraction, and electron diffraction were used for studying the zeolites MFI, MEL, and the MFIMEL intergrowth system. All three zeolites consisted of individual particles having a size in the range of approximately 0.5 m to 5 m. The particle habits varied from rather cubelike to almost spherelike with many intermediate habits. Typically, the particles of these three zeolites were assembled by many individual blocks that differed in the dimension from about 25 nm to 140 nm as well as in the shape from very frequently almost rectangular (for MFI, MEL, and MFIMEL) to sometimes roundish or irregular habits (mainly for MFIMEL). An estimate shows that some 104 up to more than 106 densely packed blocks typically may assemble each individual zeolite particle or, related to the corresponding unit cell dimension, about 108 up to 1010 unit cells. The fine surface structure of zeolite particles was terracelike with steps between adjacent terraces typically in the range of 20 nm to 60 nm; the minimum step measured was approximately 4 nm. A detailed study of the surface topography was performed by AFM, detecting organic molecules at the block intersections. The presence of topological defects was observed by HRTEM and electron diffraction.  相似文献   

2.
BST nanoparticles were directly synthesized from solution at 70 degrees C and then wrapped with zinc doped MgO in solution. This core-shell structure was analyzed by a conjunction of XRD, HRTEM, and FE-SEM. The lattice cell parameter of BST core was found to have shrinkage. The lattice cell mismatch between core and shell creates a variation of lattice cell parameter of BST core and we proposed a new method to estimate it by the XRD peak broadening effect. Two possible modes of matching the BST core and MZO shell were suggested and mode II was assigned to our core-shell structure by the observation of HRTEM and analysis of XRD data. Un-grown BST nanoparticles can also be observed by FE-SEM in fracture grains of the ceramics, which was sintered at 1350 degrees C.  相似文献   

3.
The bulk morphology and surface features that developed upon precipitation on micrometer-size calcite powders and millimeter-size cleavage fragments were imaged by three different microscopic techniques: field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) of Pt-C replicas, and atomic force microscopy (AFM). Each technique can resolve some nanoscale surface features, but they offer different ranges of magnification and dimensional resolutions. Because sample preparation and imaging is not constrained by crystal orientation, FE-SEM and TEM of Pt-C replicas are best suited to image the overall morphology of microcrystals. However, owing to the decoration effect of Pt-C on the crystal faces, TEM of Pt-C replicas is superior at resolving nanoscale surface structures, including the development of new faces and the different microtopography among nonequivalent faces in microcrystals, which cannot be revealed by FE-SEM. In conjunction with SEM, Pt-C replica provides the evidence that crystals grow in diverse and face-specific modes. The TEM imaging of Pt-C replicas has nanoscale resolution comparable to AFM. AFM yielded quantitative information (e.g., crystallographic orientation and height of steps) of microtopographic features. In contrast to Pt-C replicas and SEM providing three-dimensional images of the crystals, AFM can only image one individual cleavage or flat surface at a time.  相似文献   

4.
大面积Bi单晶纳米线阵列的制备   总被引:1,自引:1,他引:0  
在有序的氧化铝模板(AAO)的孔洞中, 采用电化学沉积工艺成功地制备了准金属Bi纳米线有序阵列. 使用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)及高分辨电子显微镜(HRTEM)对样品的结构和形貌进行了表征. XRD结果表明, 所制备的铋样品为六方相, 且沿[110]方向有很好的生长取向; FE-SEM图片清晰地说明铋纳米线阵列是大面积、填充率高和高度有序的; TEM的结果显示纳米线直径均匀、表面光滑且长径比大; HRTEM图片中清晰的晶格条纹和选区电子衍射(SAED)结果表明纳米线是单晶.  相似文献   

5.
In the present study, the {100} surface of zeolite A was exposed to a range of solutions and the response was monitored in real-time by means of atomic force microscopy (AFM). The zeolite dissolves by a well-defined layer process that is characterised by uncorrelated dissolution of units that are structurally unconnected and terrace retreat when building units are inter-connected. This process was observed to be coupled with the formation of nano-squares that are stabilized at the zeolite surface for a period before complete dissolution. Theoretical work suggests that three terminating structures are central to understanding the dissolution mechanism. Stripping the surface of the secondary building unit, the single 4-ring, is predicted to be a rate-determining step in dissolution, but this process occurs by removing monomeric rather than oligomeric units.  相似文献   

6.
Liquid crystal (LC) alignment characteristics were investigated using a solution-derived lanthanum-doped zinc oxide (La:ZnO) film that was exposed to various intensities of ion-beam (IB) irradiation. At an IB intensity of 1700 eV, uniform and homogeneous LC alignment was achieved, as revealed by cross-polarized optical microscopy and pre-tilt angle measurement. Field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to verify that the IB irradiation induced physical and chemical surface reformation of the La:ZnO film that relate to LC alignment. FE-SEM and AFM revealed that the IB irradiation reformed the existing surface structure into a new structure with an altered surface roughness. The XPS results showed that the van der Waals force with anchoring energy increased as the IB intensity increased, and this profoundly affected the state of LC alignment. The capacitance-voltage (C-V) hysteresis curve was measured as a function of IB intensity to characterize the accumulated charge as a residual DC. Nearly zero C-V hysteresis was achieved at an IB intensity of 1700 eV. Therefore, a solution-derived La:ZnO film with an IB intensity of 1700 eV has great potential for high-quality LC applications.  相似文献   

7.
Ferrihydrite nanoparticles with nominal sizes of 3 and 6 nm were assembled within ferritin, an iron storage protein. The crystallinity and structure of the nanoparticles (after removal of the protein shell) were evaluated by high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). HRTEM showed that amorphous and crystalline nanoparticles were copresent, and the degree of crystallinity improved with increasing size of the particles. The dominant phase of the crystalline nanoparticles was ferrihydrite. Morphology and electronic structure of the nanoparticles were characterized by AFM and STM. Scanning tunneling spectroscopy (STS) measurements suggested that the band gap associated with the 6 nm particles was larger than the band gap associated with the 3 nm particles. Interaction of SO2(g) with the nanoparticles was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and results were interpreted with the aid of molecular orbital/density functional theory (MO/DFT) frequency calculations. Reaction of SO2(g) with the nanoparticles resulted primarily in SO(3)2- surface species. The concentration of SO3(2-) appeared to be dependent on the ferrihydrite particle size (or differences in structural properties).  相似文献   

8.
Carbon corrosion that is presumed to occur at the proton exchange membrane fuel cell (PEMFC) cathode was visualized by atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) observations using a fundamental model electrode. Platinum nanoparticles were deposited on a highly oriented pyrolytic graphite (HOPG) substrate as a model cathode catalyst, and its stability in an acid solution at a fixed potential was investigated. The formation of blisters on the surface of the model electrode was observed by AFM after it was kept at 1.0 V vs. RHE, especially at and around the Pt particles. FE-SEM observations using a backscattered electron detector revealed that Pt particles remained unchanged at their original positions after the formation of blisters.  相似文献   

9.
Novel hierarchical Beta zeolites have been successfully synthesized via a one‐pot dual‐templates strategy utilizing gemini organic surfactant and tetraethylammonium hydroxide (TEAOH)through hydrothermal process. The influence of several parameters on the formation of hierarchical Beta zeolite, the change in acidity and a possible growth scheme were systematically investigated. The physicochemical properties of these catalysts were characterized by PXRD, BET, SEM, HRTEM SAED, TG and NH3‐TPD techniques, and the performance as acid catalysts was verified using the transformation of EtOH as a model reaction. On one hand, WAXRD data indicated that decreasing the temperature of synthesis and increasing amounts of C12‐6‐12 in the process of synthesis resulted in lower crystallinity of Beta zeolites due to the BEA nuclei formation and crystal growth constrained by C12‐6‐12. On the other hand, SAXRD and HRTEM data evidenced that C12‐6‐12 initially generated a pseudo‐ordered mesoporous phase which was then partially occupied by the zeolite. After a period of ~96 h for crystallization, the hierarchy zeolite possessing 765.7 m2·g‐1 of Brunauer‐Emmett‐Tellerarea, and average mesopore size distribution of 3.51 nm can be synthesized, and its microporous structure has a good crystallinity and lower amounts of acid sites than that of the microporous Beta one. Furthermore, the as‐obtained hierarchical zeolite displayed lower deactivation rate mainly due to the less coke formation on the surface of catalyst. It is expected to develop more considerable potential application value for the hierarchical Beta zeolite structure in the near future.  相似文献   

10.
采用化学还原法在不同单一和复配溶剂体系中制备了一系列NiCoB非晶态合金催化剂,对其液相糠醛加氢性能进行了考察,并采用N_2吸附-脱附等温线、ICP、FE-SEM、HRTEM、XRD、XPS等手段进行了表征。结果表明,在相同反应条件下,制备溶剂的表面张力、黏度、极性大小和溶解度常数等对NiCoB非晶态合金催化剂的组成、形貌和结构及其糠醛加氢反应性能均产生重要影响。由甲醇/乙二醇复配溶剂(MEG,体积比1∶1)制备的NiCoB-MEG催化剂具有最理想的糠醛液相加氢制糠醇性能,糠醛转化率达到96.4%,糠醇选择性达到83.49%,这可归因于甲醇和乙二醇之间的协同作用促进了金属组分的分散和还原。  相似文献   

11.
This work describes the use of atomic force microscopy (AFM) to measure the size of dendrimer-stabilized Pt nanoparticles (Pt DNs) deposited from aqueous solutions onto mica surfaces. Despite considerable previous work in this area, we do not fully understand the mechanisms by which PAMAM dendrimers template the formation of Pt DNs. In particular, Pt DN sizes measured by high-resolution transmission electron microscopy (HRTEM) are reported to be larger than expected if one assumes that each PAMAM molecule templates one spherical Pt nanoparticle. AFM provides a vertical height measurement that complements the lateral dimension measurement from HRTEM. We show that AFM height measurements can distinguish between "empty" PAMAM and Pt DNs. If the complexation of Pt precursor with PAMAM is prematurely terminated, AFM images and feature height distributions show evidence of arrested precipitation of Pt colloids. In contrast, sufficient Pt-PAMAM complexation time leads to AFM images and height distributions that have relatively narrow, normal distributions with mean values that increase with the nominal Pt:PAMAM ratio. The surface density of features in AFM images suggest that these Pt DNs reside on the mica surface as two-dimensional surface aggregates. These observations are consistent with an intradendrimer templating mechanism for Pt DNs. However, we cannot determine if the mechanism obeys a fixed loading law because we do not have definitive information about Pt DN shape. A second peak in the Pt DN height distribution appears when the Pt loading exceeds about 66% of PAMAM's theoretical capacity for Pt. Excluding these secondary particles, the dependence of mean feature height on the Pt:PAMAM ratio follows a power-law relationship. Also considering the magnitudes of the measured mean height values, the data suggest that Pt DNs exist as ramified, noncompact aggregates of Pt atoms interspersed within the PAMAM framework.  相似文献   

12.
以在室温条件下快速制备的一系列Ru掺杂的MCM-48介孔分子筛为催化剂,进行了无溶剂条件下空气催化氧化环己烷制环己醇和环己酮的反应研究,并通过XRD、N2吸附脱附、FT-IR等多种表征手段对该催化剂进行系统研究.表征结果表明该催化剂具有典型的MCM-48介孔材料结构,合成过程中加入的Ru以不同形态同时存在于催化剂中.催化反应的结果显示该催化剂在较温和反应条件下具有良好催化活性,并且不同的Ru物种在反应中呈现不同的活性.  相似文献   

13.
通过改良的“Hummers方法”制得氧化石墨烯,利用聚二甲基硅氧烷(PDMS)弹性印章的微接触印刷技术,以Au膜和氧化石墨烯溶液为“墨水”,通过二次印章转移,分别将Au纳米粒子和氧化石墨烯(Graphene Oxide,GO)转移至修饰了(3-氨基丙基)三乙氧基硅烷(APTES)的ITO基底(APTES/ITO)表面. 利用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)等表征图案,结果表明转移的AuNPs和GO组成的复合图案均匀,致密性较好. 利用表面电势显微镜(Surface Potential Microscope,SEPM,KFM)测定了各部分的表面电势,以APTES/ITO基底表面为表面电势零点,各部分表面电势大小为:APTES/ITO > GO > Au(0,-11.6,-44.2 mV).  相似文献   

14.
《Microporous Materials》1996,5(6):381-388
The synthesis of zeolite L nanoclusters that starts from a clear mixture and proceeds through the formation of an amorphous gel phase is followed by high-resolution transmission electron microscopy (HRTEM). It is shown that by examining the solid products from partially crystallized samples, it is possible to deduce information concerning growth events at the nanometer scale. HRTEM studies reveal a definite link between the gel microstructure and the zeolite L nanocluster morphology. Moreover, it is demonstrated that a cautious interpretation of HRTEM information does not justify the conclusion that growth takes place by agglomeration of individual zeolite L nanocrystals but rather by propagation of more isolated nucleation events through the gel network.  相似文献   

15.
In situ atomic force microscopy (AFM) is used to differentiate temporally both structure and mechanism in the removal of fundamental structural units during the dissolution of zeolite A.  相似文献   

16.
王梯  周伟正  林德昌  郭娟  龙英才 《化学学报》2003,61(10):1618-1622
用SEM, HRTEM, SAED和XRD拟合等方法研究了在四氢呋南(THF)-Na_2O- SiO_2-Al_2)_3-H_2O价格政策纱中水热合成的高硅Na-THF-FER沸石的晶体结构、孔 道定向,以及不同因素对晶胞体积的影响。通过与全硅FER沸石和K-Na-FER沸石对 比实验证明,片状的THF-FER沸石昌体与全硅FER沸石晶体骨架结构及晶体生长择优 取向相同,其空间群为Pnnm。  相似文献   

17.
A heterogeneous catalyst for epoxidation of alkenes has been synthesized by introducing polyoxomolybdate into a natural zeolite as a solid and green support. The prepared catalyst was characterized by FT-IR, inductively coupled plasma optical emission spectrometry (ICP-OES), powder X-ray diffraction (XRD), N2 absorption–desorption, field emission scanning electron micrograph (FE-SEM) and transmission electron microscopy (TEM). The catalytic investigations disclosed that nanocluster polyoxomolybdate supported on the surface is an active and recyclable catalyst in liquid phase alkene epoxidation in dichloroethane at 80 °C.  相似文献   

18.
偏高岭土水热合成NaY分子筛的机理研究   总被引:7,自引:0,他引:7  
采用茂名高岭土水热合成NaY分子筛,用IR,XRD,NMR,SEM,HRTEM等分析了其晶化过程。结果表明:偏高岭土水热合成Y型分子筛是固相转变机理,晶化过程是一个扩散-成胶-原位重排的过程。  相似文献   

19.
A commercial synthetic zeolite (Na-ZSM-5) was modified with an organic surfactant, HDTMA-Br. Then both unmodified and modified zeolite (SMZ-100) were tested to adsorb Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from water solution. Adsorption tests were done in batch conditions at the ambient temperature (20?°C) and pressure. Adsorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms and field emission scanning electron microscopy (FE-SEM) and characterization results proved the existence of surfactant on the surface of the adsorbent. In all cases, the modified zeolite sample, because of increasing the hydrophobicity of its surface, exhibited higher adsorption capacity in comparison with unmodified zeolite. Also, for each adsorbent, the adsorption capacity follows the order: E?>?X?>?T?>?B. In equilibrium experiments, Langmuir isotherm model fitted the equilibrium data better than the Freundlich model. In kinetic experiments, the pseudo-second order model described the kinetic data better than the other models.  相似文献   

20.
In this study, a new series of optically active poly(amide-imide)/zinc oxide hybrid nanocomposites were fabricated by the sonication-assisted method. The compatibility of the organic and inorganic parts was effectively improved by reducing in aggregation of nanoparticles by surface modification using the coupling agent. The coupling agent 3-methacryloxypropyltrimethoxysilane was selected to improve the compatibility between the polymer matrix and ZnO nanoparticles. Characterizations with FTIR spectroscopy, FE-SEM, X-ray diffraction and AFM confirm the success in synthesis of nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号