首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cl- -C6H5CH3*Ar, Cl- -C6H5NH2*Ar, and Cl- -C6H5OH*Ar anion complexes are investigated using infrared photodissociation spectroscopy and ab initio calculations at the MP2/aug-cc-pVDZ level. The results indicate that for Cl- -C6H5NH2 and Cl- -C6H5OH, the Cl- anion is attached to the substituent group by a single near-linear hydrogen bond. For Cl--C6H5CH3, the Cl- is attached to an ortho-hydrogen atom on the aromatic ring and to a hydrogen atom on the methyl group by a weaker hydrogen bond. The principal spectroscopic consequence of the hydrogen-bonding interaction in the three complexes is a red-shift and intensity increase for the CH, NH, and OH stretching modes. Complexities in the infrared spectra in the region of the hydrogen-bonded XH stretch band are associated with Fermi resonances between the hydrogen-stretching vibrational modes and bending overtone and combination levels. There are notable correlations between the vibrational red-shift, the elongation of the H-bonded XH group, and the proton affinity of the aromatic molecule's conjugate base.  相似文献   

2.
1,1-difluoroethylene (1,1-C2H2F2) molecules have been studied for the first time experimentally and theoretically by electron and positron impact. 0.4-1000 eV electron and 0.2-1000 eV positron impact total cross sections (TCSs) were measured using a retarding potential time-of-flight apparatus. In order to probe the resonances observed in the electron TCSs, a crossed-beam method was used to investigate vibrational excitation cross sections over the energy range of 1.3-49 eV and scattering angles 90 degrees and 120 degrees for the two loss energies 0.115 and 0.381 eV corresponding to the dominant C-H (nu2 and nu9) stretching and the combined C-F (nu3) stretching and CH2 (nu11) rocking vibrations, respectively. Electron impact elastic integral cross sections are also reported for calculations carried out using the Schwinger multichannel method with pseudopotentials for the energy range from 0.5 to 50 eV in the static-exchange approximation and from 0.5 to 20 eV in the static-exchange plus polarization approximation. Resonance peaks observed centered at about 2.3, 6.5, and 16 eV in the TCSs have been shown to be mainly due to the vibrational and elastic channels, and assigned to the B2, B1, and A1 symmetries, respectively. The pi* resonance peak at 1.8 eV in C2H4 is observed shifted to 2.3 eV in 1,1-C2H2F2 and to 2.5 eV in C2F4; a phenomenon attributed to the decreasing C=C bond length from C2H4 to C2F4. For positron impact a conspicuous peak is observed below the positronium formation threshold at about 1 eV, and other less pronounced ones centered at about 5 and 20 eV.  相似文献   

3.
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO(4), SO(4), H(2)O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO(4)(3-), SO(4)(2-) and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837cm(-1) assigned to the AsO(4)(3-) stretching vibrations. Raman bands at 1096 and 1182cm(-1) are attributed to the SO(4)(2-) antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.  相似文献   

4.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

5.
Alkylation of (ArNHCH2CH2){(2-C5H4N)CH2}NH with RX [RX = MeI, 4-CH2=CH(C6H4)CH2Cl) and (2-C5H5N)CH2Cl] in the presence of base has allowed access to the sterically demanding multidentate nitrogen donor ligands, {(2,4,6-Me3C6H2)NHCH2CH2}{(2-C5H4N)CH2}NMe (L1), {(2,6-Me3C6H3)NHCH2CH2}{(2-C5H4N)CH2}NCH2(C6H4)-4-CH=CH2 (L2) and (ArNHCH2CH2){(2-C5H4N)CH2}2N (Ar = 2,4-Me2C6H3 L3a, 2,6-Me2C6H3 L3b) in moderate yield. L3 can also be prepared in higher yield by the reaction of (NH2CH2CH2){(2-C5H4N)CH2}2N with the corresponding aryl bromide in the presence of base and a palladium(0) catalyst. Treatment of L1 or L2 with MCl2 [MCl2 = CoCl2.6H2O or FeCl2(THF)1.5] in THF affords the high spin complexes [(L1)MCl2](M = Co 1a, Fe 1b) and [(L2)MCl2](M = Co 2a, Fe 2b) in good yield, respectively; the molecular structure of reveals a five-coordinate metal centre with bound in a facial fashion. The six-coordinate complexes, [(L3a)MCl2](M = Co 3a, Fe 3b, Mn 3c) are accessible on treatment of tripodal L3a with MCl2. In contrast, the reaction with the more sterically encumbered leads to the pseudo-five-coordinate species [(L3b)MCl2](M = Co 4a, Fe 4b) and, in the case of manganese, dimeric [(L3b)MnCl(mu-Cl)]2 (4c); in 4a and 4b the aryl-substituted amine arm forms a partial interaction with the metal centre while in 4c the arm is pendant. The single crystal X-ray structures of , 1a, 3b.MeCN, 3c.MeCN, 4b.MeCN and 4c are described as are the solution state properties of 3b and 4b.  相似文献   

6.
The utility of recording Raman spectroscopy under liquid nitrogen, a technique we call Raman under nitrogen (RUN), is demonstrated for ferrocene, uranocene, and thorocene. Using RUN, low-temperature (liquid nitrogen cooled) Raman spectra for these compounds exhibit higher resolution than previous studies, and new vibrational features are reported. The first Raman spectra of crystalline uranocene at 77 K are reported using excitation from argon (5145 A) and krypton (6764 A) ion lasers. The spectra obtained showed bands corresponding to vibrational transitions at 212, 236, 259, 379, 753, 897, 1500, and 3042 cm(-1), assigned to ring-metal-ring stretching, ring-metal tilting, out-of-plane CCC bending, in-plane CCC bending, ring-breathing, C-H bending, CC stretching and CH stretching, respectively. The assigned vibrational bands are compared to those of uranocene in THF, (COT)2-, and thorocene. All vibrational frequencies of the ligands, except the 259 cm(-1) out-of-plane CCC bending mode, were found to increase upon coordination. A broad, polarizable band centered about approximately 460 cm(-1) was also observed. The 460 cm(-1) band is greatly enhanced relative to the vibrational Raman transitions with excitations from the krypton ion laser, which is indicative of an electronic resonance Raman process as has been shown previously. The electronic resonance Raman band is observed to split into three distinct bands at 450, 461, and 474 cm(-1) with 6764 A excitation. Relativistic density functional theory is used to provide theoretical interpretations of the measured spectra.  相似文献   

7.
The kinetics and H atom channel yield at both 298 and 195 K have been determined for reactions of CN radicals with C2H2 (1.00+/-0.21, 0.97+/-0.20), C2H4 (0.96+/-0.032, 1.04+/-0.042), C3H6 (pressure dependent), iso-C4H8 (pressure dependent), and trans-2-C4H8 (0.039+/-0.019, 0.029+/-0.047) where the first figure in each bracket is the H atom yield at 298 K and the second is that at 195 K. The kinetics of all reactions were studied by monitoring both CN decay and H atom growth by laser-induced fluorescence at 357.7 and 121.6 nm, respectively. The results are in good agreement with previous studies where available. The rate coefficients for the reaction of CN with trans-2-butene and iso-butene have been measured at 298 and 195 K for the first time, and the rate coefficients are as follows: k298K=(2.93+/-0.23)x10(-10) cm3 molecule(-1) s(-1), k195K=(3.58+/-0.43)x10(-10) cm3 molecule(-1) s(-1) and k298K=(3.17+/-0.10)x10(-10) cm3 molecule(-1) s(-1), k195K=(4.32+/-0.35)x10(-10) cm3 molecule(-1) s(-1), respectively, where the errors represent a combination of statistical uncertainty (2sigma) and an estimate of possible systematic errors. A potential energy surface for the CN+C3H6 reaction has been constructed using G3X//UB3LYP electronic structure calculations identifying a number of reaction channels leading to either H, CH3, or HCN elimination following the formation of initial addition complexes. Results from the potential energy surface calculations have been used to run master equation calculations with the ratio of primary:secondary addition, the average amount of downward energy transferred in a collision DeltaEd, and the difference in barrier heights between H atom elimination and an H atom 1, 2 migration as variable parameters. Excellent agreement is obtained with the experimental 298 K H atom yields with the following parameter values: secondary addition complex formation equal to 80%, DeltaEd=145 cm(-1), and the barrier height for H atom elimination set 5 kJ mol(-1) lower than the barrier for migration. Finally, very low temperature master equation simulations using the best fit parameters have been carried out in an increased precision environment utilizing quad-double and double-double arithmetic to predict H and CH3 yields for the CN+C3H6 reaction at temperatures and pressures relevant to Titan. The H and CH3 yields predicted by the master equation have been parametrized in a simple equation for use in modeling.  相似文献   

8.
The vibrational absorption spectra and vibrational circular dichroism (VCD) spectra of both enantiomers of 4-X-[2.2]paracyclophanes (X = COOCD3, Cl, I) have been recorded for a few regions in the range of 900-12000 cm(-1). The analysis of the VCD spectra for the two IR regions, 900-1600 cm(-1) and 2800-3200 cm(-1), is conducted by comparing with DFT calculations of the corresponding spectra; the latter region reveals common motifs of vibrational modes for the three molecules for aliphatic CH stretching fundamentals, whereas in the mid-IR region, one is able to identify specific signatures arising from the substituent groups X. In the CH stretching region between 2900 and 2800 cm(-1), we identify and interpret a group of three IR VCD bands due to HCH bending overtone transitions in Fermi resonance with CH stretching fundamental transitions. The analysis of the NIR region between approximately 8000 and approximately 9000 cm(-1) for X = COOCD3 reveals important features of the aromatic CH stretching overtones that are of value since the aromatic CH stretching fundamentals are almost silent. The intensifying of such overtones is attributed to electrical anharmonicity terms, which are evaluated here by ab initio methods and compared with literature data.  相似文献   

9.
Neodymium (Nd) complexes of benzene and naphthalene were synthesized in a laser-ablation supersonic molecular beam source. High-resolution electron spectra of these complexes were obtained using pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy. Second-order M?ller-Plesset perturbation calculations were employed to aid spectral and electronic-state assignments. The adiabatic ionization energies were measured to be 38 081 (5) cm(-1) for Nd(benzene) and 37 815 (5) cm(-1) for Nd(naphthalene). For the Nd(benzene) complex, the observed frequencies of 831 and 286 cm(-1) were assigned to C-H out-of-plane bending and Nd(+)-C(6)H(6) stretching modes in the (6)A(1) ion state and 256 cm(-1) to the Nd-C(6)H(6) stretching mode in the (7)A(1) neutral state. To confirm these assignments, the ZEKE spectrum of the deuterated species was recorded, and the corresponding vibrational frequencies were measured to be 710 and 277 cm(-1) in the ion state and 236 cm(-1) in the neutral state. For the Nd(naphthalene) complex, the observed vibrational modes were C(10)H(8) bending (394 cm(-1)), Nd(+)-C(10)H(8) stretching (286 and 271 cm(-1)), Nd(+)-C(10)H(8) bending (80 cm(-1)), and C(10)H(8) twisting (105 cm(-1)) in the (6)A(') ion state and metal-ligand bending (60 cm(-1)) and ligand twisting (55 cm(-1)) in the (7)A(') neutral state. The formation of the ground state of the Nd(benzene) complex requires 4f → 5d and 6s → 5d electron excitation of the Nd atom, whereas the formation of the ground state of Nd(naphthalene) involves the 6s → 5d electron promotion.  相似文献   

10.
The infrared spectra of the water-nitrogen complexes trapped in argon matrices have been studied with Fourier transform infrared absorption spectroscopy. The absorption lines of the H20-N2 1:1, 1:2, 1:n, and 2:1 complexes have been confirmed on the basis of the concentration effects. In addition, we have observed a few lines and propose the assignments for the 2:2, 2:3, and 2:4 complexes in the nu1 symmetric stretching and nu2 bending regions of the proton-acceptor molecule, and in the bonded OH stretching region of the proton-donor molecule. The redshifts in the bonded OH stretching mode and blueshifts in the OH bending mode suggest that the hydrogen bonds in the (H2O)2-(N2)n complexes with n = 1-4 are strengthened by the cooperative effects compared to the pure H2O dimer. Two absorption bands due to the 3:n complexes are also observed near the bonded OH stretching region of the H2O trimer.  相似文献   

11.
We present argon predissociation vibrational spectra of the OH(-).H(2)O and Cl(-).H(2)O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl(-).H(2)O spectrum is in very good agreement with expectations, the OH(-).H(2)O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-dimensionality calculations of the OH(-).H(2)O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.  相似文献   

12.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

13.
The first four dimensional (4D) quantum scattering calculations on the tetra-atomic H2O+Cl<-->HO+HCl reactions are reported. With respect to a full (6D) treatment, only the planar constraint and a fixed length for the HO spectator bond are imposed. This work explicitly accounts for the bending and local HO stretching vibrations in H2O, for the vibration of HCl and for the in-plane rotation of the H2O, HO and HCl molecules. The calculations are performed with the potential energy surface of Clary et al. and use a Born-Oppenheimer type separation between the motions of the light and the heavy nuclei. State-to-state cross sections are reported for a collision energy range 0-1.8 eV measured with respect to H2O+Cl. For the H2O+Cl reaction, present results agree with previous (3D) non planar calculations and confirm that excitation of the H2O stretching promotes more reactivity than excitation of the bending. New results are related to the rotation of the H2O molecule: the cross sections are maximal for planar rotational states corresponding to 10相似文献   

14.
The vibrations of the propargyl cation (H(3)C(3)H(+)) have been studied by vibrational configuration interaction (VCI) calculations, using explicitly correlated coupled cluster theory at the CCSD(T*)-F12a level to determine the underlying 12-dimensional potential energy surface. The wavenumbers of the fundamental vibrations are predicted with an accuracy of ca. 5 cm(-1). Harmonic wavenumber shifts for three different energy minima of the complex H(2)C(3)H(+)·Ar are combined with the corresponding VCI values in order to provide a comparison with recent infrared photodissociation (IRPD) spectra (A. M. Ricks et al., J. Chem. Phys., 2010, 132, 051101). An excellent agreement between experiment and theory is obtained for bands ν(2) (symm. CH stretch), ν(3) (pseudoantisymm. CC stretch), and ν(4) (CH(2) scissoring). However, reassignments are suggested for the bands observed at 3238 cm(-1), the "doublets" around 3093 and 1111 cm(-1), and the band at 3182 cm(-1). The assignment of the latter to the asymmetric CH stretching vibration of c-C(3)H·Ar is certainly wrong; the combination tone ν(3) + ν(5) of H(2)C(3)H(+)·Ar is a more likely candidate. Furthermore, accurate proton affinities are predicted for the carbenes H(2)C(n) with n = 3-8, thereby providing data of interest for interstellar cloud chemistry.  相似文献   

15.
The bidentate sandwich ligand [Fe(eta 5-C5H(4)-1-C5H4N)2] has been prepared, structurally characterized and employed in the preparation of the novel supramolecular heterobimetallic metalla-macrocycles [Fe(eta 5-C5H(4)-1-C5H4N)2]Ag2(NO3)(2).1.5H2O, [Fe(eta 5-C5H(4)-1-C5H4N)2]Cu2(CH3COO)(4).3H2O and [Fe(eta 5-C5H(4)-1-C5H4N)2]Zn2Cl4.  相似文献   

16.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

17.
18.
19.
Predissociation spectra of the H(5)O(2) (+)RG(n)(RG = Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (3350-3850 cm(-1)) and shared proton (850-1950 cm(-1)) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H(5)O(2) (+) [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)], indicating that the symmetrical H(5)O(2) (+) "Zundel" ion remains largely intact in H(5)O(2) (+)Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H(5)O(2) (+)Ar, and is dominated by two sharp transitions at 928 and 1047 cm(-1), with a weaker feature at 1763 cm(-1). The H(5)O(2) (+)Ar(n),n = 1-5 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H(5)O(2) (+) rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H(5)O(2) (+). These results are consistent with assignment of the strong low-energy bands in the H(5)O(2) (+)Ne spectrum to the vibration of the shared proton mostly along the O-O axis, with the 1763 cm(-1) band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.  相似文献   

20.
在0.050 mol·L-1磷酸盐缓冲溶液(PBS)中(pH=6.4), 亚甲蓝(MB)在铂电极上于-0.2 V产生一对不明显的伏安峰. 当向溶液中加入阳离子型Gemini表面活性剂Br-C16H33N+(CH3)2-C4H8-N+(CH3)2C16H33Br-, Br-C12H25N+(CH3)2-C4H8-N+(CH3)2C12H25Br-或Br-C8H17N+(CH3)2-C4H8-N+(CH3)2C8H17Br-后, 亚甲蓝的氧化峰显著增高, 还原峰降低, 氧化还原峰峰电位均正移, 这和表面活性剂与MB在电极表面的协同吸附有关. 联接基团相同的Gemini表面活性剂, 其影响程度随烷基链的增长而逐渐增强. 增大表面活性剂的浓度, MB的氧化峰先升高后缓慢降低. 如当Br-C16H33N+(CH3)2-C4H8-N+(CH3)2C16H33Br-的浓度为15 μmol·L-1 时, 5 μmol·L-1 MB的氧化峰峰电流达到最大值. 此外,溶液pH值和富集电位等对MB及表面活性剂的吸附亦有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号