首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe2PO5 is prepared from diverse components of the Fe---P---O system at 900°C in sealed silica tubes in vacuum. The study of a single crystal shows an orthorhombic cell, space group Pnma, with a = 7.378, B = 6.445, C = 7.471 Å and Z = 4. The structure is determined through direct methods and Fourier syntheses and refined to R = 0.027. The phosphorus fills isolated tetrahedra. The FeII and FeIII ions are ordered in distorted octahedra: the octahedra surrounding FeII build strings parallel to the b axis and share edges; the octahedra containing FeIII are connected on both sides of these strings alternatively with the PO4 tetrahedra. The two types of octahedra share one face. Such an arrangement strongly recalls two out of the three Al2SiO5 polymorphs, namely, the kyanite and sillimanite. The Mössbauer spectroscopy exhibits a magnetic transition at 220 K. Below, the spectrum shows a six-line hyperfine pattern for FeIII and an eight-lines one for FeII with a rather weak hyperfine field; above, there are two well differentiated doublets, confirming the absence of electronic charge transfer at room temperature. The magnetic susceptibility, recorded from 90 to 300 K, is typically that of an antiferromagnetic compound with CM = 7.12, θp = −350 K and TN 250 K. The magnetic interactions are discussed. The electronic localization is explained through structural and crystal field considerations; the electrostatic potential difference between the FeII and FeIII sites is calculated.  相似文献   

2.
The new tetranuclear complexes [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF (Ln = CeIII (1), PrIII (2), NdIII (3)) and [Fe3Ln(μ3-O)2(CCl3COO)8(H2O)(THF)3]·THF·C7H16 (Ln = SmIII (4), EuIII (5), GdIII (6), TbIII (7), DyIII (8), HoIII (9), LuIII (10) and YIII (11)) have been prepared. All compounds were prepared by the reaction between [Fe2BaO(CCl3COO)6(THF)6] and the corresponding LnIII nitrate salt. The crystal structures of 1–4, 8 and 9 have been determined; these isostructural molecules have a non-planar {Fe3Ln(μ3-O)2} “butterfly” core. Magnetic susceptibility measurements show dominant intramolecular antiferromagnetic exchange interactions for all the complexes. 57Fe Mössbauer spectroscopy shows three different environments for the FeIII metal ions, all in their high-spin state S = 5/2 (confirming that no electron transfer from CeIII to FeIII occurs in 1). At the time scale of the Mössbauer spectroscopy (about 10−7 s), evidence of magnetization blocking, i.e. slow relaxation of the magnetization, is observed below 3 K for 7, which was confirmed by ac susceptibility measurements.  相似文献   

3.
Mannich reaction of 2-Amino propanol, 2-tert-butyl-4-methylphenol, and formaldehyde in the ratio of 1:2:2 provides a new compound, N-(1-propanol)-N,N-bis(3-tert-butyl-5-methyl-2-hydroxybenxyl)amine (H3L), which has been characterized by X-ray crystallography and elemental analysis. In the presence of Et3N, the reaction of H3L and FeCl3·6H2O gives a dinuclear Fe(III) complex [Fe2L2] 1, which has been characterized by X-ray crystallography, magnetic measurement, and cyclic voltammetry. The value of μeff at room temperature (5.97 μB) is much less than the expected spin-only value (8.37 μB) of two high spin (hs) Fe3+ (S = 5/2) ions [μ = g[∑ZS(S + 1)]1/2], indicating there are strong coupling interactions between Fe3+ ions. The magnetic behavior of 1 denotes the occurrence of intramolecular antiferromagnetic interactions (J = −13.35 cm−1 ). CV of 1 reveals two reversible waves at 0.433 and 1.227 V versus AgCl/Ag, which can be ascribed to the successive redox coupling of FeIIFeII/FeIIIFeII and FeIIIFeII/FeIIIFeIII, respectively.  相似文献   

4.
PbMn(SO4)2 has been synthesized in an evacuated quartz tube. The nuclear and magnetic crystal structures have been determined using powder X-ray and neutron diffraction. This material crystallizes in the enantiomorphic space group pair P41212(92) and P43212(96), forming a double-helical arrangement of Pb2+ and Mn2+ cations. The Mn2+O6 octahedra are distorted. Each 3d5 Mn2+ has four nearest-neighbors and four next-nearest-neighbors adopting a frustrating arrangement. The compound orders antiferromagnetically at 5.5 K. Field dependent specific heat and magnetization measurements show that TN is suppressed to 3.3 K when μ0H=9 T.  相似文献   

5.
The possibility to synthesize layered oxycarbonates, with nominal composition Sr4Fe2−xMnxO6CO3 involving trivalent manganese, with 0≤x≤1.5, is reported for the first time. The structural study of Sr4FeMnO6CO3 using NPD, HREM, Mössbauer and XANES, shows that this phase is closely related to n=3 member of the Ruddlesden–Popper family. It derives from the latter by replacing the middle layer of transition metal octahedra by triangular CO3 groups, with two different “flag” and “coat hanger” configurations. The magnetic order is antiferromagnetic and fundamentally different from the magnetic behavior of Sr4Fe2O6CO3.  相似文献   

6.
The influence of the composition on the AC carrier transport of the composite films containing ferromagnetic CoFeZr nanoparticles in amorphous aluminium oxide matrix has been investigated. The films 3–5 μm in thicknesses and with variable composition 30 at.% < X < 60 at.% were sputtered on a single substrate from the compound target in the chamber with argon–oxygen gas mixture. TEM and SEM measurements and Mössbauer spectroscopy data have shown that all the studied films of (Co0.45Fe0.45Zr0.10)X(Al2O3)1 − X with 30 at.% < X < 65 at.% have revealed the structure with crystalline granular metallic alloy (with particles of a few nanometers in size) and amorphous alumina. AC conductance measurements were performed over the frequency range 102–106 Hz at temperatures from 80 to 330 K. DC conductance measurements have been carried out for this temperature region also. The presence of two critical regions for the metallic fraction (X1 = 33–40% and X2 = 50–55%), where diagram “electric property–composition” exhibited pronounced peculiarities, has been confirmed. A qualitative structural model of nanocomposite was offered to explain this behavior. In accordance with the model, the first critical region at X1 is associated with a shift of percolation threshold due to the formation of oxide layer on metallic nanoparticles, owing to the presence of oxygen in gas ambient during the sputtering process. The second critical region of the composition at X2 is ascribed to the formation of percolation net of magnetic metallic nanoparticles in the dielectric amorphous alumina matrix.  相似文献   

7.
Synthesis of six hydroxo-bridged binuclear manganese(III) complexes of formulae [MnL-X-MnL](ClO4) [X = OH (1–6)] along with a mononuclear manganese(III) complex (7) [Mn(L)(L′)(MeOH)2] [HL′ = 2-(2-hydroxy-phen-yl)benzimidazole] and two carboxylate-bridged binuclear manganese(III) complexes (8) and (9) are described. The complexes have been characterized by the combination of i.r., u.v.-vis spectroscopy, magnetic moments and by their redox properties. The electronic spectra of all the complexes exhibit almost identical features consisting of two d–d bands at ca. 550 and 600 nm, one MLCT band at ca.400 nm, together with two π–π* intra-ligand transitions at ca. 250 nm and ca.300 nm. Room temperature magnetic data range from μ = 2.7–3.0 BM indicates some super-exchange between the binuclear metal centers via bridging hydroxo/carboxylato groups. The X-ray crystal structure of the binuclear complex (5) revealed that it has a symmetric MnIIIN2O2 core bridged by a hydroxyl group. The X-ray analysis of the mononuclear complex (7) showed that the manganese-center possesses a distorted octahedral geometry. Electrochemical properties of hydroxo-bridged manganese(III) complexes (1–6) show identical features consisting of an irreversible and a quasi-reversible reduction corresponding to the Mn2III → MnIIMnIII → MnIIMnII couples in the voltammogram. It was found that electron withdrawing substituents on the ligand result in easier reduction. Complex (7) displays an irreversible reduction at 0.08 V and a reversible oxidation at 0.45V assignable to the MnIII → MnII reduction and MnIII → MnIV oxidation, respectively. The carboxylate-bridged compound (8) exhibits two irreversible oxidations at 0.4 and 0.6 V, probably due to Mn2III → MnIIIMnIV → MnIVMnIV oxidations and shows a quasi-reversible reductive wave at −0.85 V, tentatively assigned to Mn2III → MnIIMnIII reduction.  相似文献   

8.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

9.
A series of mononuclear MnII and MnIV complexes of general formulae [MnL2(NCS)2] (1a1d) and [Mn(L)2(NCS)2] (2a2c) have been prepared where L are Schiff bases obtained by the condensation of pyridine-2-aldehyde with para-alkyl-substituted aniline, and L are the corresponding amide ligands. The room temperature magnetic susceptibility data of (1a–1d) indicate that MnII is in a high spin state. The cyclic voltammograms of (1a–1d) exhibit a one-electron quasi-reversible MnIIMnIII oxidation. A linear correlation has been found when E0[MnIII/MnII] is plotted against Hammett p parameters. X-ray crystallographic data of (1b) shows that the central MnII ion adopts a distorted octahedral geometry with six different Mn–N distances. Upon oxidation of MnII complexes (1b–1d) by H2O2, the corresponding MnIV complexes (2a–2c) were obtained, and the Schiff base ligands were oxidized to the corresponding amides. The lowest energy LMCT bands of these MnIV complexes correlate linearly with Hammett p parameters. The redox behavior of the MnIV complexes has been investigated by cyclic voltammetry. E.p.r. spectra of the MnII and MnIV complexes are also reported.  相似文献   

10.
Using the method to synthesize rare-earth metal(III) fluoride sulfides MFS (M=Y, La, Ce–Lu), in some cases we were able to obtain mixed-valent compounds such as Yb3F4S2 instead. With Eu3F4S2 another isotypic representative has now been synthesized. Eu3F4S2 (tetragonal, I4/mmm, a=400.34(2), c=1928.17(9) pm, Z=2) is obtained from the reaction of metallic europium, elemental sulfur, and europium trifluoride in a molar ratio of 5:6:4 within seven days at 850 °C in silica-jacketed gas-tightly sealed platinum ampoules. The single-phase product consists of black plate-shaped single crystals with a square cross section, which can be obtained from a flux using equimolar amounts of NaCl as fluxing agent. The crystal structure is best described as an intergrowth structure, in which one layer of CaF2-type EuF2 is followed by two layers of PbFCl-type EuFS when sheeted parallel to the (001) plane. Accordingly there are two chemically and crystallographically different europium cations present. One of them (Eu2+) is coordinated by eight fluoride anions in a cubic fashion, the other one (Eu3+) exhibits a monocapped square antiprismatic coordination sphere with four F and five S2− anions. Although the structural ordering of the different charged europium cations is plausible, a certain amount of charge delocalization with some polaron activity has to take place, which is suggested by the black color of the title compound. Temperature dependent magnetic susceptibility measurements of Eu3F4S2 show Curie–Weiss behavior with an experimental magnetic moment of 8.19(5) μB per formula unit and a paramagnetic Curie temperature of 0.3(2) K. No magnetic ordering is observed down to 4.2 K. In accordance with an ionic formula splitting like (EuII)(EuIII)2F4S2 only one third of the europium centers in Eu3F4S2 carry permanent magnetic moments. 151Eu-Mössbauer spectroscopic experiments at 4.2 K show one signal at an isomer shift of −12.4(1) mm/s and a second one at 0.42(4) mm/s. These signals occur in a ratio of 1:2 and correspond to Eu2+ and Eu3+, respectively. The spectra at 78 and 298 K are similar, thus no change in the Eu2+/Eu3+ fraction can be detected.  相似文献   

11.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

12.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

13.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

14.
A number of mononuclear manganese(II) and manganese(III) complexes have been synthesized from tridentate N2O aminophenol ligands (HL1–HL5) formed by reduction of corresponding Schiff bases with NaBH4. Three types of tridentate N2O aminophenols have been prepared by reducing with NaBH4which are (a) Schiff bases obtained by bromo salicylaldehyde reaction with N,N-dimethyl/N,N-diethyl ethylene diamine (HL1, HL2), (b) Schiff bases obtained by condensing salicylaldehyde/bromo salicylaldehyde and picolyl amine (HL3, HL4), (c) pyridine-2-aldehyde and 2-aminophenol (HL5). All the manganese complexes have been prepared by direct addition of manganese perchlorate to the corresponding ligands and were characterized by the combination of i.r., u.v.–vis spectroscopy, magnetic moments and electrochemical studies. The u.v.–vis spectra of all of the manganese(III) complexes show two weak d–d transitions in the 630–520 nm region, which support a distorted octahedral geometry. The electron transfer properties of all of the manganese(III) complexes (1–4 and 6) exhibit mostly similar characteristics consisting two redox couples corresponding to the MnIII → MnII reductions and MnIII → MnIV oxidations. The electronic effect on the potential has also been studied by changing different substituents in the ligands. In all cases, an electron-donating group stabilizes the higher oxidation state and electron withdrawing group prefers the lower oxidation state. The cyclic voltammogram of [MnII(L5)2] shows an irreversible oxidation MnII → MnIII at −0.88 V, followed by another quasi-reversible oxidation MnIII → MnIV at +0.48 V. The manganese(III) complex (3) [Mn(L3)2]ClO4has been characterized by X-ray crystallography.  相似文献   

15.
A planar network consisting of {Mo17(NO)2}3{MoV 2}3{Fe6III} cluster entities that are interlinked to layers via {FeII(H2O)4}2+ groups is formed stepwise from building units. The corresponding mixed-valence compound exhibits a variety of different formal oxidation states: {MoNO}3+, MoV, MoVI, FeII, and FeIII. This compound also represents an extension of building-block hierarchy from the molecular level to extended networks.  相似文献   

16.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

17.
57Fe Mössbauer spectroscopy, dc and ac magnetization, specific heat, and differential scanning calorimetry measurements were performed in a powder BiMn0.95Fe0.05O3 sample prepared at 6 GPa and 1383 K. The substitution of 5% Fe for Mn increases the temperatures of the structural monoclinic-to-orthorhombic phase transition (from 768 to 779 K) and the ferromagnetic transition (from 98 to 109 K) by about 10 K in BiMn0.95Fe0.05O3 compared with BiMnO3. On the other hand, the temperature of the monoclinic-to-monoclinic phase transition associated with the orbital ordering strongly decreases in BiMn0.95Fe0.05O3 (414 K) compared with that of BiMnO3 (474 K). The saturated magnetic moment at 5 K and 5 T is also suppressed from 3.92 μB per formula unit in BiMnO3 to 3.35 μB in BiMn0.95Fe0.05O3. The large quadrupole splitting (1.18 mm/s) observed at 293 K in BiMn0.95Fe0.05O3 can be explained by the strong Jahn-Teller distortion and cooperative orbital order. The quadrupole splitting reduces by two times above the orbital melting temperature.  相似文献   

18.
Single crystals of iron(II) pyroborate, Fe2B2O5, were prepared at 1000–1050 °C under an argon atmosphere. The crystals were transparent, yellowish in color and needle-like or columnar. The crystal structure of Fe2B2O5 was analyzed by single-crystal X-ray diffraction. Refined triclinic unit cell parameters were a=3.2388(2), b=6.1684(5), c=9.3866(8) Å, α=104.613(3)°, β=90.799(2)° and γ=91.731(2)°. The final reliability factors of refinement were R1=0.020 and wR2=0.059 [I > 2σ(I)]. Transmittance over 50% in the visible light region from 500 to 750 nm was observed for a single crystal of Fe2B2O5 with a thickness of about 0.3 mm. The light absorption edge estimated from a diffuse reflectance spectrum was at around 350 nm (3.6 eV). Magnetic susceptibility was measured for single crystals at 4–300 K. Fe2B2O5 showed antiferromagnetic behavior below the Néel temperature, TN≈70 K, and the Weiss temperature was TW=36 K. The effective magnetic moment of Fe was 5.3μB.  相似文献   

19.
Iron mixed-valence complex, (n-C3H7)4N[FeIIFeIII(dto)3] (dto = C2O2S2) shows a new-type of phase transition coupled with spin and charge around 120 K, where the charge transfer between the FeII and FeIII sites occurs reversibly, and shows the ferromagnetic transition at 7 K. To investigate the magnetic structure and its dimensionality of (n-C3H7)4N[FeIIFeIII(dto)3], we have synthesized a mixed crystal system, (n-C3H7)4N[FeII1?xZnIIxFeIII(dto)3], and measured its magnetic properties. In this system, the magnetic moment is reduced with increasing of Zn ratio. Moreover, the ferromagnetic interaction changes to the antiferromagnetic one and the remnant magnetization disappears between x = 0.48 and 0.96, while the charge transfer between the FeII and FeIII sites disappears above x = 0.26. In this paper, we present the magnetic dilution effect on the charge transfer phase transition and the ferromagnetic transition by means of magnetic susceptibility measurement and 57Fe Mössbauer spectroscopy.  相似文献   

20.
A novel two-dimensional network bimetallic Fe Au spin crossover coordination polymer based on 3-phenylpyridine-coordinated iron centers and linear gold cyanide bridges {Fe(3-phenylpyridine)2[Au(CN)2]2}n (1), has been synthesized. The compound is characterized by elemental analysis, IR, single-crystal X-ray analysis at 300 and 90 K and magnetic measurements. The FeII ions in 1 have octahedral FeIIN6 coordination geometries, which are linked by [Au(CN)2] units at the equatorial plane to form a polymeric 2D sheet architecture. The two pyridine rings coordinate in axial position. Variable-temperature (2-300 K) magnetic susceptibility measurements of 1 were performed to determine the spin transition behavior. SQUID data show that high and low spin states exist in a 1:1 ratio at 90 K. However, only one kind of FeII atom is apparent crystallographically at 90 K, indicating that the high and low spin sites are disordered in the polymeric 2D framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号