首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The microsecond flash photolysis of 5-methoxyindole in aqueous solutions has been studied at γexc≥ 290 nm. Transients identified in this time realm in neutral solutions are: eaq-, the 5-methoxyindole radical cation (γmax≅ 440 nm), the neutral transient with γmax≅ 530 nm) and an unidentified oxygen sensitive transient with γmax≅ 435 nm. Radical cations and e-aq are shown to be produced in equal amounts consistent with a photoionization process as the only source of both transients. H+ quenching of fluorescence and radical cation production gives equivalent Stern-Volmer constants indicating that photoionization occurs from the fluorescent state. The unidentified oxygen sensitive transient exhibits a pK a of2–2.5 and is quenched at lower pH values indicating that it also has a fluorescent state precursor.  相似文献   

2.
Abstract— Transient absorption spectra produced by laser flash-photolysis of an aqueous solution of ephedrine have been measured under a variety of conditions. Ephedrine was found to photoionise via a biphotonic process. The apparent yield of photoionisation increases with lowering of pH, a value of 8.8 being found for the p K a associated with this change. The cation radical absorption spectrum has been determined using the techniques of both pulse radiolysis and laser flash photolysis. The extinction coefficient of the cation at 295 nm was determined to be 1.37 × 104 dm3 mol-1 cm-1 and 1.2 × 104 dm3 mol-1cm-1 by the two techniques, respectively, at pH 11. It is also shown that the rate constant for electron abstraction by the azide radical to form the ephedrine cation is controlled by protonation of the amine group in the side chain. The ephedrine anion radical spectrum and its extinction coefficient at 305 nm were also determined. The excited states responsible for photoionisation and photodegradation are discussed.  相似文献   

3.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

4.
Abstract— A comparison of the transient absorption spectra from the photolysis of disulfides in solution suggests that C-S bond breakage is a common primary photolytic process. This process becomes more important as the resulting carbon centered radical is stabilized by increasing alkyl substitution or resonance interaction with an aromatic system. The perthiyl radical product is characterized by λmax∽380 nm,ε380∽1700 M −1 cm−1 and decays by second order kinetics with k 2∽3.7×108 M −1 s−1 in water.
In the presence of O2, the photolysis of disulfides which produce the thiyl radical give transient absorptions in the 500–600 nm region. Possible identities of these transients are discussed.  相似文献   

5.
Abstract— Transient absorption spectra produced by laser flash photolysis of an aqueous solution of 8-methoxypsoralen (8-MOP) have been studied. The biphotonic production of hydrated electrons and of the radical ions, 8-MOP + and 8-MOP- is reported. The hydrated electron was found to react with ground state 8-MOP with k ˜ 3 × 1010 M -1 s-1. In order to obtain a true triplet-triplet absorption spectrum. contributions from the radical ions were subtracted from the overall transient absorption. In addition, contributions from e-aq to the transient spectrum were removed by using N2O, low laser intensity to minimize photoionization or by measuring the transient O.D. after the electron has decayed. These three methods each produced the same triplet-triplet spectrum which differs in the red region from previously reported spectra.  相似文献   

6.
Abstract. The quantum yields of HCI (φHC1) formation have been measured for the photolysis of N -methyldiphenylamine (MeDPA), triphenylamine (TPA) and diphenylamine (DPA) in the presence of CCl4 in polar solvents. The quantum yields of N-methylcarbazole formation (φmφca) have also been determined for the system MeDPA-CCl4. With increasing CCl4 concentration, φHCl increases as φMeCA decreases, and φHCl reaches maximum values 2.7 at 1 M CCl4. Using laser photolysis, transient spectra have been recorded for MeDPA in the absence and presence of CCl4 in polar and non-polar solvents, and for TPA. Transient absorption due to the triplet states and photocyclization products (without CCU), exciplexes, the (C6H5)2 NCHi radical, the MeDPA+ cation radical, the (TPA+., CCl4) ion pair, and the TPA+ cation radical have been identified. The mechanistic implications of these results are discussed.  相似文献   

7.
Abstract Laser flash photolysis and pulse radiolysis have been carried out on the diuretic drug amiloride. The primary photochemical processes in aqueous solution were found to be photoionisation and triplet formation. Photoionisation was found to occur by a biphotonic process for 265 nm excitation but by a monophotonic process for excitation at 353 nm. The spectral properties of the resulting cation radical of amiloride were determined by pulse radiolysis using one electron oxidation by the radical anion Br2·¯ Photoexcitation of amiloride in isopropanol did not result in photoionisation but instead a semireduced radical of amiloride was observed. The spectral properties of the semireduced radical of amiloride were determined using one electron reduction by the CO2·¯ radical.  相似文献   

8.
Abstract— Reaction kinetics of radicals produced by the nanosecond laser flash photolysis of 2,2'-dithiobis(pyridine N -oxide) and related compounds have been studied. The transient absorption band at 360 nm was attributed to the radical in which the unpaired electron mainly localizes on the S atom ( N -oxypyridyl-2-thio radical). The reactivities of the radical for conjugated dienes are lower than those of the pyridyl-2-thio radical, suggesting that a considerable unpaired electron density on the S atom delocalizes onto the N -oxypyridine moiety. The addition reaction rate of the radical to the conjugating diene was accelerated with hydrogen-bonding solvents and with addition of the cation, which may stabilize the N+-O- canonical structure, increasing the unpaired electron density on the S atom. By the photolysis of N -hydroxypyridine-2-thione, the N-O bond was predominantly dissociated producing a pyr-idyl-2-thio radical. By the photolysis of its anion, photoejection took place followed by the N-O bond fission, yielding pyridine-2-thione.  相似文献   

9.
355 nm光照下大气液相中HNO2与C6H5Cl的反应机理   总被引:3,自引:0,他引:3  
利用瞬态吸收光谱技术进行了有氧、无氧条件下氯苯与亚硝酸水溶液的交叉反应机理研究,初步考察了这些瞬态物种的生长与衰减等行为, 并对其光解产物进行了GC/MS分析.研究表明,HNO2在355 nm紫外光的照射下可产生•OH自由基, •OH和氯苯反应生成C6H5Cl•••OH,反应速率常数为(6.6~7.0)×109 L•mol-1•s-1; 在有氧条件下C6H5Cl•••OH可氧化为C6H5Cl•••OHO2, 反应速率常数为(1.6 ± 0.2)×109 L•mol-1•s-1,然后进一步分解; C6H5Cl•••OH衰减或与亚硝酸等作用可形成多种含硝基的化合物或醌类物质.  相似文献   

10.
Abstract— Laser flash photolysis studies were carried out on a triphenylmethane dye, crystal violet (CV+), at 248 nm in aqueous solutions. The results show that CV+ undergoes photoionization and the resulting transients CV-2+, hydrated electrons (e-aq) and CV+ radical formed by the reaction of e-aq with CV+ have been characterized. Studies using suitable scavengers were done to support the characterization of the transient species. Laser intensity effects show that the ionization is biphotonic. Two mechanisms are proposed to explain the observed photoionization involving higher excited singlet state and/ or another long-lived excited state of the dye.  相似文献   

11.
Abstract— The transient absorption spectra of the intermediates produced by the 355 nm laser excitation of gilvocarcin derivatives have been investigated in various solvents. The spectra consist of a triplet-triplet absorption in the visible region and a residual absorption observed between 340 and 700 nm due to a long-lived species, assigned to the radical cation. A broad-fast decaying band with a maximum at around 700 nm attributed to the solvated electron is also seen in solutions containing a low DMSO/water volume ratio and at 266 nm irradiation of a 50% methanol/water solvent mixture. The molar absorption coefficient of the triplet state of gilvocarcin V (GV) and gilvocarcin M (GM), determined by the energy transfer method, is independent of the solvent properties and has a value of 3.0 × 104/ M cm. The triplet decay rate constants for both drugs are between 1 and 5 × 104/s. A similar initial yield and triplet decay rate constant of GV were observed in the presence of 3.4 m M thymine. Thus, a quenching rate constant of the GV's triplet state by thymine is estimated to be lower than 106/Ms. The triplet quantum yields of both antibiotics determined by using the comparative method are higher in dimethylsulfoxide (DMSO) (0.18) than are those corresponding to 25% DMSO/water (0.06). The decrease in φT in the presence of water could be attributed to an enhanced internal conversion rate constant from the S1 state or to an increase in the photoionization yield. The similarity of the transient intermediates and their yields for GV and GM suggest that their photobiological differences are due to other factors such as DNA binding constants, preferential localization of the drugs in the cell or the enhanced reactivity of the vinyl group toward cellular components.  相似文献   

12.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

13.
Abstract— The photobleaching of alloxazine in buffered aqueous solution has been studied by means of flash photolysis using conventional and laser excitation sources. Several transient species have been characterized. The alloxazine triplet state (Λmax 420 nm and 550 nm, times; = 9 μs) was identified with the aid of low-temperature comparison experiments in ethanol. Transient absorption with Λmax 440 nm, which appears after decay of the triplet state, and whose second-order decay is pH-dependent, is postulated to be due to the semiquinone radical (AH2*) and a radical derived from alloxazine by addition of water and loss of a hydrogen atom (HAOH*), which are in equilibrium with their conjugate cation radicals. The results of experiments in the presence of oxygen indicate that these species are not primarily formed from the triplet state. The enhanced second-order decay of the flavin radicals in oxygen-containing solutions is interpreted in terms of their reaction with the peroxy radicals. The proposed mechanisms account for the production of hydroxylated alloxazines.  相似文献   

14.
Abstract— The excited singlet state of a deprotonated, reduced flavin [1, 5-dihydro- N (3)-carboxymethyllumiflavin] in aqueous solution at pH 8 has been detected by laser flash photolysis. The broad absorption band maximized at ∼ 490 nm (ε= 9.9 × 103 M -1 cm-1). The lifetime of the transient was found to be 100 ± 15 ps. The lifetime was not affected by the presence of pyrimidine dimers, which would be monomerized under these conditions. A longer-lived transient, tentatively identified as the solvated electron, was also detected. The neutral reduced flavin did not give a detectable transient.  相似文献   

15.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

16.
Abstract— The spectra have been measured of the transient species formed in the nanosecond flash photolysis of aqueous solutions of sulphacetamide under a variety of conditions. In addition to the excited triplet state, the cation radical and the solvated electron were observed. The ionisation of aqueous sulphacetamide was found to occur by a biphotonic process. The extinction coefficient of the cation radical of sulphacetamide was determined by both laser flash photolysis and pulse radiolysis techniques, a value of 1.9 times 103 dm3mol-1cm-1 being obtained. The rate of electron reaction with sulphacetamide and the anion radical spectrum were also determined by the two techniques, good agreement being obtained. The spectrum of the product of the reaction of the superoxide anion radical and the corresponding rate constant have also been determined. A possible mechanism of photosensitized skin reaction due to sulphacetamide is discussed.  相似文献   

17.
PHOTOADDITION OF CHLORPROMAZINE TO GUANOSINE-5'-MONOPHOSPHATE   总被引:1,自引:1,他引:1  
Abstrart—The photochemistry of chlorpromazine (CPZ) with guanosine-5'-monophosphate (GMP) was studied as a model for the photoaddition of CPZ to DNA. Irradiation of CPZ with calf thymus DNA produced a product emitting at 520 nm, whereas with GMP emission was at 495 nm. HPLC separation of photolysis mixtures of [3H]CPZ with GMP and [14C]GMP with CPZ indicated that three photoadducts were formed. One of the adducts fluoresced at 500 nm and appeared to be the product detected but not separated by Fujita et al. (Photochem. Photobiol . 1981, 34 , 101–105). A second adduct emitted at 460 nm, and the third was nonfluorescent. The photoadduct emitting at 500 nm was characterized by UV, fluorescence, and NMR to be an adduct from coupling of the C-8 position of guanine to the C-2 position of the phenothiazine ring of CPZ. The cation radical of CPZ (CPZ +) does not appear to be an intermediate since enzymatically generated CPZ + formed a product that eluted with a retention time close to that of the photoadducts, but did not emit at 520 nm.  相似文献   

18.
Photoreduction of methyl viologen (MV2+) by eosin-Y (EY2−) in the presence of triethanolamine (TEOA) has been investigated in water–methanol mixture by means of steady-state photolysis and laser-flash photolysis in the visible/near-infrared regions. The complete conversion to the persistent methyl viologen radical cation (MV·+) was observed in the presence of lower concentrations of EY2− and excess TEOA. By laser-flash photolysis measurements, electron transfer was confirmed to occur from the triplet state of EY2− [3(EY2−)*] to MV2+ in the rate constants of ca 2.0 × 1010 M −1 s−1. The rates and efficiencies of production of MV·+ were found to be dependent on solvent compositions and concentrations of MV2+ ionic salt and TEOA. The back electron transfer reaction from MV·+ to EY·− was retarded in the presence of TEOA, which supports that EY2− is reproduced by accepting an electron from TEOA. In the presence of excess TEOA, the indirect formation of MV·+ from EY·3− which was produced by accepting an electron from TEOA, was confirmed. The contributions of both the oxidative and reductive routes of 3(EY2−)* for the MV·+ formation have been confirmed.  相似文献   

19.
The photochemistries of the melanin precursors dopa, 5-S-cysteinyldopa (5-SCD) and 2.5-S,S'-dicysteinyldopa (2.5-SCD) were investigated by 265-nm laser flash photolysis. The quantum yield of hydrated electron following flash photolysis of dopa (9.1%) was half the yield of dopasemiquinone (19.6%), implying that dopasemiquinone is formed via two primary photochemical mechanisms: photionisation (giving e) or photohomolysis (giving H˙). Dopasemiquinone rapidly disproportionates to form dopaquinone and re-form dopa. Dopaquinone in turn decays via a base-catalysed unimolecular cyclisation eventually to form dopachrome. Assignment of the transient species was confirmed by previous pulse radiolysis studies of the one-electron oxidation of dopa. In contrast, flash photolysis of the cysteinyldopas, 5-SCD and 2,5-SCD results in lower photoionisation quantum yields and the production of initial transient species whose absorption spectra were markedly different from their semiquinone absorption spectra previously determined pulse radiolytically. These observations indicate that the primary cysteinyldopa photochemical species is not such a semiquinone, but rather results from S-CH2 bond photohomolysis. Absorption spectra and rate constants for the formation and decay of various transient species are reported.  相似文献   

20.
Abstract— The excited states of bilirubin (BR) in a variety of environments have been studied by 347 nm laser flash photolysis. Quantum yields of formation of triplet BR have been shown to be less than 0.005 in solution in water ( p H 9–11), methanolic ammonia, 10% aqueous mulgofen and in cetyl trimethyl-ammonium bromide. In benzene the quantum yield was 0.01 although this diminished to less than 0.005 on addition of triethylamine. Permanent products are formed with benzene and with 1% methanolic ammonia. With BR in HSA a transient decaying with k = 3.5 × 105 s-1 is formed by a monophotonic process together with a permanent product. Neither species is affected by oxygen or by iodide ion. Both originate from BR molecules in the strongest binding site in the HSA. The yields of both species are unaffected by salt but are temperature dependent. The decay of the transient is strongly temperature dependent corresponding to an activation energy of about 50–60 kj mol-1. If this transient is a triplet it is formed with a quantum yield of 0.13 ± 0.01. The relevance of these results to an understanding of the photo therapeutic process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号