首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
非线性抛物型偏积分微分方程的H1-Galerkin 混合有限元方法   总被引:1,自引:0,他引:1  
收稿给出一类非线性抛物型偏积分微分方程的H1-Galerkin混合有限元方法.给出了一维空间的半离散、全离散格式及最优阶误差估计,并将该方法推广到二维和三维空间.  相似文献   

2.
伪双曲方程的新混合有限元方法   总被引:1,自引:1,他引:1  
构造分析一类二阶伪双曲方程的H1-Galerkin扩展混合有限元方法,该方法采用了扩展混合有限元方法和H1-Galerkin混合有限元方法相结合的技巧.新的格式同时保持了扩展混合有限元方法和H1-Galerkin混合有限元方法的优点.该混合格式与标准的混合格式相比能同时逼近三个变量:未知函数、梯度和流量(系数乘以梯度),并且不必满足LBB相容性条件.  相似文献   

3.
讨论了一类伪双曲型方程的一个H1-Galerkin非协调混合有限元方法.利用插值算子的特殊性质,在半离散和全离散格式下,得到了与传统混合有限元相同的误差估计且不需要满足LBB条件.  相似文献   

4.
阻尼Sine-Gordon方程的H1-Galerkin混合元方法数值解   总被引:1,自引:0,他引:1  
利用H1-Galerkin混合有限元方法讨论阻尼Sine-Gordon方程,得到一维情况下半离散和全离散格式的最优阶误差估计,并且推广应用到二维和三维情况,而且不用验证LBB相容性条件.  相似文献   

5.
四阶强阻尼波方程的新混合元方法   总被引:4,自引:3,他引:4  
刘洋  李宏 《计算数学》2010,32(2):157-170
构造半线性四阶强阻尼波动方程的新H1-Galerkin混合有限元方法,得到一维情况下半离散和全离散格式最优收敛阶误差估计,并且推广到二维和三维情况,不用验证LBB相容性条件.  相似文献   

6.
研究了非线性抛物方程的H~1-Galerkin混合有限元方法.利用双线性元及零阶RaviartThomas元,在不提高原始解正则性的前提下,创新性的使用分裂技巧等讨论了半离散格式下和Euler全离散格式下的关于原始变量u的H~1(Ω)模及流量p=▽u的H(div;Ω)模的超逼近性质.数值算例证明了理论的正确性.  相似文献   

7.
利用修正的H~1-Galerkin混合有限元方法研究了广义神经传播方程,论证了其半离散解的存在唯一性,得到了半离散解的最优阶误差估计,该方法的优点是不需验证LBB相容性条件.  相似文献   

8.
对流扩散方程的混合时间间断时空有限元方法   总被引:2,自引:0,他引:2  
构造并分析二阶对流扩散方程的混合时间间断时空有限元格式.利用混合有限元方法将二阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散低阶方程.证明数值解的稳定性、存在唯一性和收敛性.最后通过数值结果验证该算法的有效性和可行性.  相似文献   

9.
电报方程H~1-Galerkin非协调混合有限元分析   总被引:5,自引:3,他引:2  
主要研究一类电报方程的H~1-Galerkin非协调混合有限元方法,在任意四边形网格剖分下,其逼近空间分别取为类Wilson元与双线性Q_1元,在不需要满足LBB相容性条件及不采用传统的Ritz投影的情况下,得到了与常规有限元方法相同的L~2-模和H~1-模的误差估计,进一步拓展了H~1-Galerkin混合有限元和类Wilson元的应用范围.  相似文献   

10.
研究了Sobolev方程的H~1-Galerkin混合有限元方法.利用不完全双二次元Q_2~-和一阶BDFM元,建立了一个新的混合元模式,通过Bramble-Hilbert引理,证明了单元对应的插值算子具有的高精度结果.进一步,对于半离散和向后欧拉全离散格式,分别导出了原始变量u在H~1-模和中间变量p在H(div)-模意义下的超逼近性质.  相似文献   

11.
In this article, an $H^1$-Galerkin mixed finite element (MFE) method for solving the time fractional water wave model is presented. First-order backward Euler difference method and $L1$ formula are applied to approximate integer derivative and Caputo fractional derivative with order $1/2$, respectively, and $H^1$-Galerkin mixed finite element method is used to approximate the spatial direction. The analysis of stability for fully discrete mixed finite element scheme is made and the optimal space-time orders of convergence for two unknown variables in both $H^1$-norm and $L^2$-norm are derived. Further, some computing results for a priori analysis and numerical figures based on four changed parameters in the studied problem are given to illustrate the effectiveness of the current method  相似文献   

12.
H^1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type. By use of the typical characteristic of the elements, we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method, but without LBB stability condition.  相似文献   

13.
In this paper, we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by $H^{1}$-Galerkin mixed finite element methods. We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization, and backward Euler scheme for temporal discretization. Firstly, a priori error estimates and some superclose properties are derived. Secondly, a two-grid scheme is presented and its convergence is discussed. In the proposed two-grid scheme, the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy. Finally, a numerical experiment is implemented to verify theoretical results of the proposed scheme. The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice $h=H^2$.  相似文献   

14.
In this paper, a weak Galerkin finite element method is proposed and analyzed for the second-order elliptic equation with mixed boundary conditions. Optimal order error estimates are established in both discrete $H^1$ norm and the standard $L^2$ norm for the corresponding WG approximations. The numerical experiments are presented to verify the efficiency of the method.  相似文献   

15.
In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a $H^1$-optimal velocity approximation and a $L_2$-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small, nonlinear Navier-Stokes problem on the coarse mesh with mesh size $H$, one linear Stokes problem on the fine mesh with mesh size $h << H$. The algorithm we study produces an approximate solution with the optimal, asymptotic in $h$, accuracy.  相似文献   

16.
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive $L^∞$- and $H^{-1}$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

17.
Summary. A nonlinear Galerkin method using mixed finite elements is presented for the two-dimensional incompressible Navier-Stokes equations. The scheme is based on two finite element spaces and for the approximation of the velocity, defined respectively on one coarse grid with grid size and one fine grid with grid size and one finite element space for the approximation of the pressure. Nonlinearity and time dependence are both treated on the coarse space. We prove that the difference between the new nonlinear Galerkin method and the standard Galerkin solution is of the order of $H^2$, both in velocity ( and pressure norm). We also discuss a penalized version of our algorithm which enjoys similar properties. Received October 5, 1993 / Revised version received November 29, 1993  相似文献   

18.
A low order nonconforming mixed finite element method (FEM) is established for the fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field and the magnetic field, in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by $H^1(\Omega)$-conforming finite elements, respectively. The existence and uniqueness of the approximate solutions are shown. Optimal order error estimates of $L^2(H^1)$-norm for the velocity field, $L^2(L^2)$-norm for the pressure and the broken $L^2(H^1)$-norm for the magnetic field are derived.  相似文献   

19.
For Sobolev equation, we present a new numerical scheme based on a modified weak Galerkin finite element method, in which differential operators are approximated by weak forms through the usual integration by parts. In particular, the numerical method allows the use of discontinuous finite element functions and arbitrary shape of element. Optimal order error estimates in discrete $H^1$ and $L^2$ norms are established for the corresponding modified weak Galerkin finite element solutions. Finally, some numerical results are given to verify theoretical results.  相似文献   

20.
In this paper, we study the Crank-Nicolson Galerkin finite element method and construct a two-grid algorithm for the general two-dimensional time-dependent Schrödinger equation. Firstly, we analyze the superconvergence error estimate of the finite element solution in $H^1$ norm by use of the elliptic projection operator. Secondly, we propose a fully discrete two-grid finite element algorithm with Crank-Nicolson scheme in time. With this method, the solution of the Schrödinger equation on a fine grid is reduced to the solution of original problem on a much coarser grid together with the solution of two Poisson equations on the fine grid. Finally, we also derive error estimates of the two-grid finite element solution with the exact solution in $H^1$ norm. It is shown that the solution of two-grid algorithm can achieve asymptotically optimal accuracy as long as mesh sizes satisfy $H = \mathcal{O}(h^{\frac{1}{2}})$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号