首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescein is one of the best available fluorophores for biological applications, but the factors that control its fluorescence properties are not fully established. Thus, we initiated a study aimed at providing a strategy for rational design of functional fluorescence probes bearing fluorescein structure. We have synthesized various kinds of fluorescein derivatives and examined the relationship between their fluorescence properties and the highest occupied molecular orbital (HOMO) levels of their benzoic acid moieties obtained by semiempirical PM3 calculations. It was concluded that the fluorescence properties of fluorescein derivatives are controlled by a photoinduced electron transfer (PET) process from the benzoic acid moiety to the xanthene ring and that the threshold of fluorescence OFF/ON switching lies around -8.9 eV for the HOMO level of the benzoic acid moiety. This information provides the basis for a practical strategy for rational design of functional fluorescence probes to detect certain biomolecules. We used this approach to design and synthesize 9-[2-(3-carboxy-9,10-dimethyl)anthryl]-6-hydroxy-3H-xanthen-3-one (DMAX) as a singlet oxygen probe and confirmed that it is the most sensitive probe currently known for (1)O(2). This novel fluorescence probe has a 9,10-dimethylanthracene moiety as an extremely fast chemical trap of (1)O(2). As was expected from PM3 calculations, DMAX scarcely fluoresces, while DMAX endoperoxide (DMAX-EP) is strongly fluorescent. Further, DMAX reacts with (1)O(2) more rapidly, and its sensitivity is 53-fold higher than that of 9-[2-(3-carboxy-9,10-diphenyl)anthryl]-6-hydroxy-3H-xanthen-3-ones (DPAXs), which are a series of fluorescence probes for singlet oxygen that we recently developed. DMAX should be useful as a fluorescence probe for detecting (1)O(2) in a variety of biological systems.  相似文献   

2.
Two rhodamine-based probes were designed and prepared, which exhibited highly sensitive and selective fluorescence enhancement upon binding to Pd2+ by UV–vis and fluorescence spectroscopies. Meanwhile the distinct color changes and rapid switch-on fluorescence also provided “naked-eyes” detection for Pd2+ over a broad pH range. The recognition mechanism was explored through Job’s plot, MS data, IR spectra and related theoretical calculations. Furthermore, the probes were applied for biological imaging to confirm that they can be used for monitoring Pd2+ in living cells (L929 and A549 cells) and living mice with satisfying results, which further demonstrated their value of practical applications in environmental and biological systems.  相似文献   

3.
Selective and sensitive tumor imaging in vivo is one of the most requested methodologies in medical sciences. Although several imaging modalities have been developed including positron emission tomography (PET) and magnetic resonance (MR) imaging for the detection of tumors, none of these modalities can activate the signals upon being accumulated or uptaken to tumor sites. Among these modalities, only optical fluorescence imaging has a marked advantage, that is, their signals can be dramatically increased upon detecting some biological features. In this short review, I will introduce some recent strategies for activatable optical fluorescence imaging of tumors, and discuss their advantages over other modalities.  相似文献   

4.
Probes that react specifically with hydrogen peroxide to release chromophoric or fluorescent reporter groups were designed and synthesized.  相似文献   

5.
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is a well-known fluorophore, with a high molar extinction coefficient and high fluorescence quantum efficiency (Phi(fl)). Furthermore, its structure can be modified to change its excitation and emission wavelengths. However, little work has been done on the structural modification of fluorines at the B-4 position with other functional groups. We synthesized 4-methoxy-substituted BODIPY derivatives in satisfactory yields, and found that they exhibited improved solubility in aqueous solution. Moreover, their oxidation and reduction potentials were greatly decreased without any change in their absorbance and fluorescence properties. These features of 4-substituted BODIPYs may be useful for developing novel fluorescence probes based on the intramolecular photoinduced electron transfer (PeT) mechanism, because it is possible to optimize the PeT process precisely by modulating the electrochemical properties of the fluorophore. The value of this approach is exemplified by its application to the development of a highly sensitive and pH-independent fluorescence probe for nitric oxide.  相似文献   

6.
Development of a highly selective fluorescence probe for hydrogen sulfide   总被引:1,自引:0,他引:1  
Hydrogen sulfide (H(2)S) has recently been identified as a biological response modifier. Here, we report the design and synthesis of a novel fluorescence probe for H(2)S, HSip-1, utilizing azamacrocyclic copper(II) ion complex chemistry to control the fluorescence. HSip-1 showed high selectivity and high sensitivity for H(2)S, and its potential for biological applications was confirmed by employing it for fluorescence imaging of H(2)S in live cells.  相似文献   

7.
Newly synthesised 1,8-naphthyridine-based molecular probes, NAP-1 and NAP-2, exhibit highly selective fluorescence responses towards the toxic cadmium over coordinatively competing Zn2+ and several other metal ions examined. On the one hand, NAP-1 (MeOH:H2O, v/v 80:20, pH 7.4) exhibits ca. 1.5 order of magnitude higher stability constant for Cd2+ over Zn2+; on the other hand, NAP-2 in MeOH offers unique selectivity only towards Cd2+, exhibiting both absorbance and emission red shifts as well as fluorescence enhancement. By 1H NMR analysis, the tetra-coordinated binding is indicated at least for the NAP-1+Cd2+ complex and theoretical calculations reveal relatively stronger binding of Cd2+ over Zn2+.

  相似文献   

8.
金属纳米团簇具有很好的光电特性,但因其化学活性高而不易稳定存在于水介质中.根据核苷酸的所有碱基中胞嘧啶与Ag+的结合能力最强,寡聚鸟苷酸易折叠和序列中同时存在腺嘌呤和胸腺嘧啶易发生杂交导致自身团聚等因素,本文设计了胞嘧啶和腺嘌呤各占50%的寡聚核苷酸序列模板分子用于合成稳定性好、荧光性能优异的银纳米簇,并进一步应用于含巯基药物的分析测定.研究表明,含巯基药物通过巯基能高选择性地与银纳米簇发生相互作用形成Ag?S键,使得银纳米簇的荧光发生静态猝灭.据此,本文建立了以抗高血压药物卡托普利为代表的含巯基物质的分析方法.该方法快速、准确、选择性好、灵敏度高,可成功应用于卡托普利片剂的分析.  相似文献   

9.
A new rhodamine B-based fluorescent probe for the hypochlorite anion (OCl(-)) has been designed, synthesized, and characterized. The probe comprises a spectroscopic unit of rhodamine B and an OCl(-)-specific reactive moiety of dibenzoylhydrazine. The probe itself is nearly nonfluorescent because of its spirolactam structure. Upon reaction with OCl(-), however, a largely enhanced fluorescence is produced due to the opening of the spirolactam ring by the oxidation of the exocyclic hydrazide and subsequently the formation of the hydrolytic product rhodamine B. Most notably, the fluorescence-on reaction shows high sensitivity and extremely high selectivity for OCl(-) over other common ions and oxidants, which makes it possible for OCl(-) to be detected directly in their presence. In addition, the reaction mechanism has been investigated and proposed. The OCl(-) anion selectively oxidizes the hydrazo group in the probe, and forms the analogue of dibenzoyl diimide, which in turn hydrolyzes and releases the fluorophore. The reaction mechanism that is described here might be useful in developing excellent spectroscopic probes with cleavable active bonds for other species.  相似文献   

10.
Simple structural compounds 1 to 3 were synthesized.The presence of Cu2+ resulted in the fluorescence and absorption spectra change of 1 and 2,which indicated that 1 and 2 showed a highly selective response to Cu2+ over other metal ions.However,3 showed no selectivity for metal ions,which means that the compound could bind with several metal ions,such as,Ni2+,Zn2+,Cd2+.Hg2+, Pb2+,Fe3+,Mg2+,Ca2+,and Co2+,except Cu2+ and Ag+.The different spectral responses were attributed to the difference in binding sites for 1 and 3.  相似文献   

11.
The highly selective molecular topological indices EAID and 2‐EAID were extended in order to further improve their discrimination capability. The new 3‐EAID index is obtained as a combination of extended EAID index and the Wiener index. They were tested by screening three data sets of structures comprising over 36 million alkane trees with 25 vertices, 15 million benzenoids with 14 benzene rings, and 20 million compounds taken from real data sets. While EAID index respectively exhibited 75, 29, and 10 pair degeneracies in the three data sets, and 2‐EAID index respectively exhibited 15, 1, and 2 pair degeneracies, the 3‐EAID index could discriminate all unique molecules in virtual and real data sets with >107 million compounds including the molecules stated eralier. Therefore, the new index possesses not only significance in theory but also the practical application value for confirming new compounds (the number of registered substances in Chemical Abstracts Service in June 2015 is over 99 million). Also, 3‐EAID and 2‐EAID, as well as EAID could be used for administration of chemical information systems such as large structural data sets, evaluation of organic structures, and computer‐aided synthesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Zhao Q  Li RF  Xing SK  Liu XM  Hu TL  Bu XH 《Inorganic chemistry》2011,50(20):10041-10046
A polypyridyl ligand, 2,3,6,7,10,11-hexakis(2-pyridyl)dipyrazino[2,3-f:2',3'-h]quinoxaline (HPDQ), was found to have excellent fluorescent selectivity for Cd(2+) over many other metal ions (K(+), Na(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+), Cu(2+), Ag(+), Hg(2+), Zn(2+), and Cr(3+)) based on the intramolecular charge-transfer mechanism, which makes HPDQ a potential fluorescence sensor or probe for Cd(2+). An obvious color change between HPDQ and HPDQ + Cd(2+) can be visually observed by the naked eye. The structure of the complex HPDQ-Cd has been characterized by X-ray crystallography. Density functional theory calculation results on the HPDQ and HPDQ-Cd complexes could explain the experimental results.  相似文献   

14.
The host-guest interaction between the hexaaza macrocyclic ligand 3,7,11,18,22,26-hexaazatricyclo[26.2.2.2]tetratriaconta-1(31),13(34),14,16(33),28(32),29-hexaene (P3) and three rigid dicarboxylic acids (isophthalic acid, H2is; phthtalic acid, H2ph; and terephthalic acid, H2te) has been investigated using potentiometric equilibrium methods and NMR spectroscopy including the measurement of intermolecular nuclear Overhauser effects (NOEs) and self-diffusion coefficients (D). Ternary complexes are formed in aqueous solution as a result of hydrogen bond formation and Coulombic interactions between the host and the guest. In the [(H6P3)(is)]4+ complex, those bonding interactions reach a maximum yielding a log K6R of 4.74. Competitive distribution diagrams and total species distribution diagrams are used to illustrate the main features of these systems. In particular, a selectivity of over 89% at p[H] = 5.0 is obtained for the complexation of the is versus the te substrates. The recognition capacity of P3 over dicarboxylic acids (da) is compared to the related hexaaza macrocycle Me2P3 (7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2]tetratriaconta-1(30),13,15,28,31,33-hexaene) that binds da with a lesser strength, and it is not selective. Theoretical calculations performed at molecular dynamics level have also been carried out and point out that the origin of selectivity is mainly due to the capacity of the P3 ligand receptor to adapt to the geometry of the dicarboxylic acid to form relatively strong hydrogen bonds.  相似文献   

15.
Fluorescence properties of fluorescein-based probes are shown to be finely controlled by the rate of photoinduced electron transfer from the benzoic acid moiety (electron donor) to the singlet excited state of the xanthene moiety (electron acceptor fluorophore). The occurrence of photoinduced electron transfer is clearly evidenced by transient absorption spectra showing bands due to the radical cation of the electron donor moiety and the radical anion of the xanthene moiety, observed in laser flash photolysis experiments. The photoinduced electron transfer rates and the rates of back electron transfer follow the Marcus parabolic dependence of electron transfer rate on the driving force. Such a dependence provides for the first time a quantitative basis for a rational design principle which has high efficiency in modulating fluorescence properties of fluorescein-based probes.  相似文献   

16.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

17.
A fluorimetric liquid chromatographic method for the determination of 5-hydroxyindoles based on the benzylamine derivatization process mediated through an online photocatalytic oxidation has been developed. In this study, we used a photocatalytic column comprising tefzel tubing packed with TiO2-coated glass beads, as a pre-column derivatization reactor. The fluorescence derivatization of 5-hydroxyindoles using benzylamine proceeded during their passage through the reaction column under near-UV irradiation. The 5-hydroxyindole derivatives were separated continuously on a reversed-phase liquid chromatography within 50 min, using 100 mM acetate buffer (pH 4.6)-acetonitrile (72:28, v/v; isocratic elution) containing 3 mM sodium octanesulfonate; the samples were detected fluorimetrically at 465 nm upon excitation at 350 nm. The detection limits (signal-to-noise ratio = 3) of the 5-hydroxyindoles were in the range from 160 to 360 fmol per 5 μL injection. We have applied this method, which requires minimal sample pre-treatment, to the determination of 5-hydroxyindole-3-acetic acid in human urine.  相似文献   

18.
Optical imaging is a promising tool for visualizing fundamental biological processes including disease progression, detection of tumors, and therapeutic monitoring non-invasively. Unlike visible light, near-infrared fluorescence (NIRF) imaging (beyond 700–1,700 nm) offers a competitive advantage to yield high-resolution images within a certain penetration depth (few millimeters to centimeters depending on NIR window). The last few years have witnessed rapid development of new NIRF probes within the span of whole NIR window, including small-molecule dyes, inorganic nanoparticles, and organic macromolecules. Benefitted by this, we observe a continual surge in the number of preclinical and clinical studies of NIRF imaging in surgery and related applications. At present, NIRF-guided imaging has emerged as a quintessential procedure to assist surgeons for intraoperative delineation and resection of tumors. Moreover, NIRF imaging is also used to improve the intraoperative staging, identify the hidden lesion in diseased organs, map lymph node metastases, detect tumor margins, and highlight vital organs intraoperatively. Considering rapid advancement of this field, we review recent progress in the development of NIRF probes, cancer-targeting strategies and their application for surgical navigation, particularly for the sentinel lymph node mapping, detection of tumors, and angiography. Moreover, we spotlight surgical navigation instrumentation that is currently used for intraoperative tumor detection.  相似文献   

19.
Wang  Fei  Zhang  Jian 《中国科学:化学(英文版)》2019,62(10):1265-1266
<正>Styrene(ST) is one of the most important chemicals in the world because of its widely applications in the syntheses of rubbers or thermoplastics. However, ST is mainly produced through catalytic dehydrogenation of ethylbenzene(EB) and the product always contains large amount unreacted EB and by-products toluene(Tol) and benzene(Bz) [1]. Because of the similar boiling points and sizes of these molecules, the separation of these mixtures to reach polymer-grade ST of 99.5% purity is extremely challenging. Considering that  相似文献   

20.
Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号