首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract—The triplet-triplet absorption spectra of coumarin, 5.7 dimethoxycoumarin and the furocoumarin 4'5' dihydropsoralen. a model for 4'5' psoralen-pyrimidine mono adducts, have been determined by the techniques of pulse radiolysis and laser flash photolysis. The extinction coefficients of the triplet transitions have been measured and used to determine the singlet → triplet intersystem crossing quantum yields for 347 nm excitation in water. Reaction rate constants for coumarin and 4'5' dihydropsoralen triplets with various pyrimidine and purine nucleic acid bases, and amino acids, have been measured. Long-lived transient absorptions detected after quenching coumarin and 4'5' dihydropsoralen triplets with tryptophan are assigned to mixtures of the corresponding coumarin radical anion and the tryptophan radical cation. The spectra of the radical anions of coumarin and 4'5' dihydropsoralen were established using pulse radiolysis of the coumarins in aqueous formate. It is suggested that coumarins and furocoumarin triplets are quenched by nucleic acid bases and amino acids via a chargetransfer mechanism.  相似文献   

2.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

3.
Abstract. The triplet-triplet absorption spectra of psoralen, xanthotoxin, angelicin and bergapten have been determined using the technique of pulse radiolysis and laser flash photolysis in benzene and water. The extinction coefficients of the triplet transitions have been measured and used to determine the singlet → triplet intersystem crossing quantum yields for 353 nm excitation. These yields vary considerably in passing from benzene to water as solvent. The highest yields were obtained for psoralen and angelicin in water, being 0.45 and 0.33, respectively. Reaction rate constants of the psoralen and angelicin triplets with various pyrimidine and purine nucleic acid bases and amino acids have been measured. The high reactivities support the suggestion that the photosensitising properties of furocou-marins are mediated by the corresponding furocoumarin triplet states. The similarly high S → T quantum yields, and triplet reactivities with pyrimidines of psoralen and angelicin, also support the suggestion that the observed differences in photosensitising properties of these two psoralens may be due to their differing geometries, which allow psoralen itself to intercalate DNA more easily than angelicin. The efficient reactions also found for psoralen and angelicin triplets with amino acids suggest that such triplets in vivo may also react with these components. Significant damage may thus be caused to protein as well as nucleic acid components of the cell.  相似文献   

4.
ULTRAVIOLET PHOTOCHEMISTRY OF THYMINE IN AQUEOUS SOLUTION   总被引:2,自引:0,他引:2  
Abstract— We have investigated the ultraviolet photochemistry of thymine in aqueous solution. Four isomeric dimers are produced, and the yield of each has been measured as a function of thymine concentration, oxygen concentration, and temperature. At low thymine concentration, dimerization proceeds via the triplet state, while at high concentration it arises mainly from aggregates, probably from a singlet precursor. We have determined the ratios of rate constants for the triplet state mechanism and the quantum yield for dimerization from aggregates. The quantum yield for dimerization from the triplet state in thymine is smaller by a factor of about 10 than that in uracil, which in turn is smaller by another factor of 10 than that in orotic acid. It increases with the energy of the exciting radiation in a manner similar to the behaviour of uracil and orotic acid. On the other hand, dimer formation from aggregates is independent of photon energy. Dimerization from aggregates decreases with increasing temperature, while the total production of dimers from the triplet state is independent of temperature.  相似文献   

5.
Abstract— In bidistilled water, 4-thiouridine (4TU) exhibits a weak unusual luminescence, the quantum yield of which is 3 × 10-4 at 25°C. The excitation spectrum corresponds well to the 4TU absorption spectrum. The emission lies at longer wavelengths (Λmax 550 nm) than the 4TU phosphorescence observed at 77 K (Λmax, 470–480 nm). From the emission signal obtained after an excitation flash of 3 ns half-width, an "apparent" rate constant for the radiative deactivation process, shorter than 5 × 106 s, can be inferred. The 300 K emission is efficiently quenched by halides and by oxygen: quenching involves a long-lived intermediate (⋍ 200 ns).
Clearly the emissive state X is populated through the S0-S1 electronic transition π→π* of 4TU. The nature of X cannot be unambiguously determined: it cannot be an excimer but can be either the 4TU triplet state or another chemical state distinct from the 4TU excited singlet or triplet states.
An interesting finding is that the 300 K emission and the ability of 4TU to photoreact are related: they are quenched with the same efficiency by halide anions. This indicates that quenching occurs at the same long-lived intermediate species , which is either a precursor of the emitter or the emitter itself.  相似文献   

6.
Abstract— The production of singlet oxygen by thiazine dye photosensitization, as measured by the rate of photooxidation of tryptophan, was found to be very sensitive to changes of pH in the range 5–9. For methylene blue in aerated solutions, the production of 1O2* is approximately five times more efficient in basic than in acidic medium. This was shown to be related to the p K 's of the triplet dyes, by evaluating the yields of 1O2* from the lifetimes and the quenching rate constants for the two ionic species of sensitizer triplets measured by laser flash photolysis. Changes in the quenching rate constants of the thiazine triplet states can be correlated with the triplet energies.  相似文献   

7.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

8.
Two thymidine-derived nucleosides 1 and 2 were prepared by attaching a chiral naphthalene to the positions 5' and 3' of the sugar. The resulting dyads, which contain key substructures present in drugs and nucleic acids, exhibit different spatial arrangements (transoid or cisoid) of the fluorophore relative to the thymine unit. Emission measurements on these compounds in the presence of ROH molecules revealed a remarkable intramolecular prescence quenching for dyad 1. The obtained results are consistent with quenching of the singlet excited state of 1 by hydrogen-bond donor solvents. Thus, a physical deactivation process (vibronically induced internal conversion) would be the pathway responsible for the accelerated decay of 1*, favorably competing with fluorescence and intersystem crossing to the triplet. This effect appears to be strongly dependent on the relative spatial arrangement between the naphthalene and thymine units, together with the hydrogen-bonding ability of the employed ROH.  相似文献   

9.
Abstract— 3-Carbethoxypsoralen (3-CPs) has been tested in the photochemotherapy of psoriasis. It only forms monoadducts with DNA and is being considered as a non-carcinogenic alternative to 8-MOP which itself forms DNA crosslinks that arc difficult to repair. Using laser flash photolysis or pulse radiolysis, the triplet state of 3-CPs, a possible intermediate in photosensitization, has been generated in several solvents: ethanol, water and benzene. The triplet lifetime, extinction coefficient and quantum efficiency of formation have been measured. Triplet reactivities towards (i) the solvents used, (ii) 3-CPs, (iii) oxygen, (iv) tryptophan and (v) tyrosine, leading, respectively, to photoadditions with water, ethanol and 3-CPs, to 1O2, semioxidized tryptophan and semioxidized tyrosine, (vi) thymine and (vii) uracil have been investigated. The dark binding of 3-CPs to DNA has been studied by comparing the reactivity of eaq- with free 3-CPs, free DNA and the 3-CPs DNA complex. Some photophysical and photochemical properties of 4',5'di-hydro-3-carbethoxypsoralen(DH–3-CPs), model of the main fluorescent photo-product of 3-CPs, have also been investigated. Biological consequences of the photochemical properties of 3-CPs andDH–3-CPs have been studied in a cellular system (haploid yeast).  相似文献   

10.
Abstract The results of a nanosecond laser flash photolysis investigation of the UVA sunscreen Mexoryl* SX in various solvent environments and within a commercial sunscreen formulation are reported. To the best of our knowledge this is the first laser flash photolysis study of a commercial suncare formulation. In each of these environments kinetic UV-visible absorption measurements following nanosecond 355 nm laser excitation reveals a short-lived species with a solvent-dependent absorption maximum around 470–500 nm and a solvent-dependent lifetime of 50–120 ns. This transient absorption is attributed to the triplet state of Mexoryl* SX on the basis that it is quenched by molecular oxygen leading to the formation of singlet oxygen in acetonitrile. The singlet oxygen quantum yield (φΔ), determined by comparative time-resolved near-infrared luminescence measurements and extrapolated to the limit of complete triplet state quenching, is estimated as 0.09 ± 0.03 in acetonitrile. In aqueous solution the shorter triplet state lifetime combined with lower ambient oxygen concentrations precludes significant triplet state quenching. For the commercial sunscreen formulation there was no observable difference in the measured triplet lifetime between samples exposed to oxygen or argon, suggesting that the singlet oxygen quantum yield in such environments is likely to be orders of magnitude lower than that measured in acetonitrile.  相似文献   

11.
Abstract

A quantitative analysis of singlet oxygen is described, permitting, in combination with actinometry, the determination of quantum yields of photooxydation as well as of singlet oxygen production. The procedure is applied to humic materials dissolved in water which have been shown to be singlet oxygen sensitizers. The quenching of corresponding triplet states by either oxygen or transition metal ions is observed in laser photolysis experiments  相似文献   

12.
PHOTODYNAMIC INACTIVATION OF LYSOZYME BY EOSIN   总被引:2,自引:0,他引:2  
Abstract— It has been demonstrated that singlet oxygen is the major oxidizing entity in the photo-dynamic inactivation of hen egg white lysozyme by eosin, using D2O to enhance the solvent-induced decay lifetime, and azide ion as a specific scavenger. Two regimes of inactivation can be distinguished depending on whether the sensitizer is free or complexed to the enzyme. The kinetic analysis for free dye sensitization, based on photostationary measurements and inactivation quantum yields, indicates that at least 1 in 15 singlet oxygen interactions with lysozyme leads to loss of lytic activity. The direct attack of triplet eosin makes a lesser overall contribution in air-saturated solutions, where 1 in 4 reactions induces inactivation. Lysozyme binds 1 eosin molecule from pH 4 to 12, leading to almost total quenching of the tryptophyl residue fluorescence without inhibition of the enzymic activity. The inactivation quantum yields indicate that singlet oxygen generated from the bound dye is the inactivating agent, but the dominant attack takes place with the complexed fraction of lysozyme molecules. The tryptophyl residue loss is the same or smaller in changing from H2O to D2O despite the 5–10 times increase in quantum yield, indicating that singlet oxygen inactivates also by reacting with residues other than tryptophan. The photochemical and fluorescence results are consistent with the the identification of tryptophyl site 108 with the eosin binding site and a reaction target for singlet oxygen. In a re-examination of earlier work on eosin-sensitized photo-oxidation of I", it has been found that singlet oxygen is the oxidizing agent in aerobic solutions.  相似文献   

13.
Abstract— The 1-anilinonaphthalene-8-sulfonic acid solubilized in dodecylammonium propionate reversed micellar cyclohexanic solutions, emitted a strong fluorescence, and was photooxidized under aerobic conditions. Carbon tetrachloride (CCl4) highly quenched the fluorescence and remarkably enhanced the oxidation reaction. The fluorescence quenching obeyed the Stern-Volmer relation, and the photooxidation was caused by the singlet oxygen generated by the photosensitization of the dye. From the kinetic analysis, it was known that the intersystem crossing rate from the dye excited singlet to triplet was enhanced by CCl4. Carbon tetrachloride did not quench the triplet state. The ratio of quantum yields for the oxidation in the presence and absence of CCl4 was independent of the oxygen concentration in the reaction mixture. The fluorescence quenching constant and the intersystem crossing rate were obtained at various solubilized water contents.  相似文献   

14.
The photophysical properties of closely-coupled, binuclear complexes formed by connecting two ruthenium(II) bis(2,2':6',2'-terpyridine) complexes via an alkynylene group are compared to those of the parent complex. The dimers exhibit red-shifted emission maxima and prolonged triplet lifetimes in deoxygenated solution. Triplet quantum yields are much less than unity and the dimers generate singlet molecular oxygen with low quantum efficiency. Temperature dependence emission studies indicate coupling to higher-energy triplet states while cyclic voltammetry shows that the metal centres are only very weakly coupled but that extensive electron delocalization occurs upon one-electron reduction. The radiative rate constants derived for these dimers are relatively low, because the lowest-energy metal-to-ligand, charge-transfer states possess increased triplet character. In contrast, the rate constants for nonradiative decay of the lowest-energy triplet states are kept low by extended electron delocalization over the polytopic ligand. The poor triplet yields are a consequence of partitioning at the second triplet level.  相似文献   

15.
Taking the 266 nm excited pyrimidine (uracil or thymine) with cyclopentene as model reaction systems, we have examined the photoproduct formation dynamics from the [2 + 2] photocycloaddition reactions of triplet pyrimidines in solution and provided mechanistic insights into this important DNA photodamage reaction. By combining two compliment methods of nanosecond time-resolved transient IR and UV-vis laser flash-photolysis spectroscopy, the photoproduct formation dynamics as well as the triplet quenching kinetics are measured. Characteristic IR absorption bands due to photoproduct formation have been observed and product quantum yields are determined to be ~0.91% for uracil and ~0.41% for thymine. Compared to the measured large quenching rate constants of triplet uracil (1.5 × 10(9) M(-1)s(-1)) or thymine (0.6 × 10(9) M(-1)s(-1)) by cyclopentene, the inefficiency in formation of photoproducts indicates competitive physical quenching processes may exist on the route leading to photoproducts, resulting in very small product yields eventually. Such an energy wasting process is found to be resulted from T(1)/S(0) surface crossings by the hybrid density functional calculations, which compliments the experiments and reveals the reaction mechanism.  相似文献   

16.
The nature and properties of the low-lying singlet and triplet valence excited states of 2,2':5',2'-terthiophene (terthiophene) and 2,2':5',2':5',2'-quaterthiophene (tetrathiophene) are discussed on the basis of high-level ab initio computations. The spectroscopic features determined experimentally for short alpha-oligothiophenes are rationalised on theoretical grounds. Special attention is devoted to the nonradiative decay process through intersystem crossing (ISC) from the singlet to the triplet manifold, which is known to be relatively less efficient in tetrathiophene. Along the geometry relaxation of the S1 state of terthiophene, the S1 and T2 states become degenerate, which leads to a favourable situation for the occurrence of ISC. The parallel process is expected to be less favoured in tetrathiophene because of the less efficient spin-orbit coupling and the increase of the S1-T2 energy gap.  相似文献   

17.
Photodimerization of Polyacrylic and polymethacrylic derivatives with different pendant thymine unit content was studied in dimethylformamide solution. The quantum efficiency of thymine base for the photodimerization increased with increasing thymine content in the copolymers. The quenching study, which used isoprene as the quencher, revealed that the photodimerization resulted from excited singlet state increases with increasing thymine content. The photochemical results were discussed in terms of self-association of thymine bases in the polymer chain.  相似文献   

18.
The quantum yields of singlet oxygen formation (ØΔ) by the quenching of triplet states of organic sensitizers are measured at various concentrations of the sensitizers by using the time-resolved thermal lens method. Above a certain concentration, ØΔ is independent of the sensitizer concentration. Below the threshold, ØΔ gradually decreases as the concentration of the sensitizer decreases. The extrapolation of ØΔ to zero concentration indicates that singlet oxygen formation is not necessarily dominant in the quenching process even for the 3ππ* state in benzene.  相似文献   

19.
Abstract— The triplet state characteristics (spectrum, lifetime and quantum yield) for four dye sensi tisers [methylene blue (MB), erythrosin (ER), haematoporphyrin (HP) and riboflavin (RF)] were determined in methanol by laser flash photolysis and singlet oxygen yields (0.60 to 0.48) from time-resolved measurements of the 1270 nm near infrared emission. The reaction of singlet oxygen with four long chain unsaturated phenyl esters [oleate (18: 1), linoleate (18: 2), linolenate (18: 3) and arachidonate (20: 4)] was followed quantitatively using the singlet oxygen luminescence technique and also, after continuous420–700 nm irradiation, by HPLC and other analysis of the isomeric product monohydroperoxides. The overall quantum yield of photooxidation (∼10-2) was shown to be consistent with the observed singlet oxygen quenching constants(2–12 times 104 dm3 mol-1 s-1) for the four esters studied and the singlet oxygen lifetime in methanol (τ∼ 9 μs). The isomer product distribution was interpreted in terms of a dual singlet oxygen and radical mechanism, the radical contribution increasing with sensitiser in the order ER = MB < HP ≪ RF, but also showing some dependence on substrate unsaturation. Evidence is presented for singlet oxygen quenching by MB and RF ( kO = 1.6 and 6.0 times 107 dm3 mol-1 s-1) and for the accelerated photobleaching of the dye sensitisers in the presence of the unsaturated esters.  相似文献   

20.
Abstract— The Stern-Volmer constants for fluorescence quenching by tetramethylethylene decrease in the order DMC ≫ DHP > F-2 > 8-MOP. The same order was observed for the quantum yields of [2+2] cycloaddition reaction with tetramethylethylene on direct irradiation. In [2+2] photocycloaddition of F-2 with tetramethylethylene in ethanol, the ratio of quantum yields deduced from singlet and triplet states of F-2; φ3010, is about 5. The excited triplet state is the reactive state for the [2+2] photocycloaddition of F-2 with tetramethylethylene in solution but the excited singlet state of F-2 becomes very important in biological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号