首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the cyclic nonapeptide oxytocin (OT) with a number of alkaline earth and divalent transition metal ions (X(2+)) was examined employing mass spectrometry (MS) and ion mobility spectrometry (IMS) techniques in combination with molecular dynamics (MD) and density functional theory (DFT) calculations. Under acidic conditions it was found that OT exhibits an exceptionally strong affinity for all divalent metal ions resulting in strong [OT + X](2+) peaks in the mass spectrum. Under basic conditions only Cu(2+) and Ni(2+)-OT complexes were detected and these were singly, doubly, triply, or quadruply deprotonated. Collision-induced dissociation of the [OT - 3H + Cu](-) complex yielded exclusively C-terminal Cu(2+)-containing fragments (Cu(2+)fragment(3-)), suggesting that the Cu(2+) ligation site includes deprotonated C-terminal backbone amide nitrogen atoms and the N-terminal amino nitrogen atom in [OT - 3H + Cu](-). MD and DFT calculations indicate a square-planar complex is consistent with these observations and with experimental collision cross sections. MD and DFT calculations also indicate either an octahedral or trigonal-bipyramidal complex between Zn(2+) and OT is lowest in energy with carbonyl oxygens being the primary ligation sites. Both complexes yield cross sections in agreement with experiment. The biological impact of the structural changes induced in OT by divalent metal ion coodination is discussed.  相似文献   

2.
The solvation of copper(II) sulfate in binary mixtures of water and N,N-dimethylformamide (DMF) is studied by a combined approach using electrochemical studies in solution and a mass spectrometric assay of the solvated ions formed from these solutions upon electrospray ionization (ESI). In the condensed phase, the limiting transference numbers (t(+/-)(o)) and the apparent ion association constants (K(A)'s) of CuSO(4) have been determined in water/DMF solutions at 20 degrees C. The t(+)(o) values decrease with increasing DMF content, demonstrating a gradual solvation of Cu(2+) by DMF molecules. The association constants indicate that aggregation becomes more pronounced as the DMF content increases. In order to achieve complementary insight, the intrinsic interactions among the ions and solvent molecules are investigated in gas-phase experiments of the CuSO(4)/water/DMF system using ESI mass spectrometry. Under the conditions used, the dications [Cu(DMF)(n)](2+) (n = 3-6), [Cu(2)(DMF)(n)SO(4)](2+) (n = 2-7), and [Cu(3)(DMF)(n)(SO(4))(2)](2+) (n = 2-7), and the monocations [Cu(OH)(DMF)(n)](+), [Cu(DMF)(n)(HSO(4))](+) (both, n = 1-3), and [Cu(DMF)(n)](+) (n = 1, 2), are formed as the leading copper-containing cations. Likewise, polynuclear copper clusters observed in the anion ESI spectra support partial aggregation occurring in solution. The gas-phase studies clearly support the conclusions that (i) DMF is a highly preferred ligand for CuII in comparison to water and that (ii) DMF supports ion association for which the mass spectrometric data suggest the formation of polynuclear copper clusters.  相似文献   

3.
The gas-phase reactions between Ca(2+) and selenourea were investigated by means of electrospray/tandem mass spectrometry techniques. The MS/MS spectra of [Ca(selenourea)](2+) complexes show intense peaks at m/z 43, 121, 124, and 146 and assigned to monocations produced in different coulomb explosion processes. The structures and bonding characteristics of the stationary points of the [Ca(selenourea)](2+) potential energy surface (PES) were theoretically studied by DFT calculations carried out at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level. The analysis of the topology of this PES allows identification of H(2)NCNH(+), CaSeH(+), selenourea(+). and CaNCSe(+) ion peaks at m/z 43, 121, 124, and 146, respectively. The reactivity of selenourea and the topology of the corresponding potential energy surface mimic that of thiourea. However, significant dissimilarities are found with respect to urea. The dissociative electron-transfer processes, not observed for urea, is one of the dominant fragmentations for selenourea, reflecting its much lower ionization energy. Similarly, the coulomb explosions yielding CaXH(+) + H(2)NCNH(+) (X = O or Se), which for urea are not observed, are very favorable for selenourea. Finally, while in urea the loss of NH(3) competes with the formation of NH(4+), for selenourea the latter process is clearly dominant.  相似文献   

4.
Electrospray ionization mass spectrometry makes it possible to generate gas-phase bis-ethylenediamine nickel and copper dications, [M(en)(2)](2+) (M = Ni, 1; M = Cu, 2), as well as their {[M(en)(2)]@cuc[8]}(2+) inclusion complexes with the macrocyclic cavitand cucurbit[8]uril (cuc[8]). The unimolecular gas-phase reactivity of these species has been investigated by electrospray ionization tandem mass spectrometry with a quadrupole-time-of-flight configuration. Distinctive fragmentation pathways have been observed for the free and encapsulated [M(en)(2)](2+) (M = Ni, Cu) dications under collision-induced dissociation (CID) conditions. The dications [M(en)(2)](2+) (M = Ni, Cu) dissociate according to several competitive pathways that involve intra-complex hydrogen or electron-transfer processes. Most of these channels are suppressed after encapsulation inside the cucurbit[8]uril macrocycle and, as a consequence, a simplification of the {[M(en)(2)]@cuc[8]}(2+) fragmentation pattern is observed. The results obtained demonstrate that the encapsulation of a coordination complex inside a host molecule can be used to alter the nature of the product ions generated under CID conditions.  相似文献   

5.
The histidine-rich peptide H5WYG (GLFHAIAHFIHGGWHGLIHGWYG) was found to induce membrane fusion at physiologic pH in the presence of zinc chloride. In this study, we examined the ion selectivity of the interaction of Zn(2+) with H5WYG. This investigation was conducted by using adsorption at air/water interface and mass spectrometry. We found that a peptide-metal complex is formed with Zn(2+) ions. Electrospray ionisation-mass spectrometry (ESI-MS) reveals that the [H5WYG + Zn + 2H](4+), [H5WYG + Zn + H](3+) and [H5WYG + Zn](2+) ions, appearing by increasing the amount of Zn(2+) equivalent, correspond to a monomolecular H5WYG - Zn(2+) complex. Tandem mass spectrometry (MS/MS) provides evidence for the binding of the single Zn(2+) ion to the H(11) and H(19) and probably H(15) residues.  相似文献   

6.
Porphyrin derivatives having a galactose or a bis(isopropylidene)galactose structural unit, linked by ester or ether bonds, were characterized by electrospray tandem mass spectrometry (ES-MS/MS). The electrospray mass spectra of these glycoporphyrins show the corresponding [M + H](+) ions. For the glycoporphyrins with pyridyl substituents and those having a tetrafluorophenyl spacer, the doubly charged ions [M + 2H](2+) were also observed in ES-MS with high relative abundance. The fragmentation of both [M + H](+) and [M + 2H](2+) ions exhibited common fragmentation pathways for porphyrins with the same sugar residue, independently of the porphyrin structural unit and type of linkage. ES-MS/MS of the [M + H](+) ions of the galactose-substituted porphyrins gave the fragment ions [M + H - C(2)H(4)O(2)](+), [M + H - C(3)H(6)O(3)](+), [M + H - C(4)H(8)O(4)](+) and [M + H - galactose residue](+). The fragmentation of the [M + 2H](2+) ions of the porphyrins with galactose shows the common doubly charged fragment ions [porphyrin + H](2+), [M + 2H - C(2)H(4)O(2)](2+), [M + 2H - C(4)H(8)O(4)](2+), [M + 2H - galactose residue](2+) and the singly charged fragment ions [M + H - C(3)H(6)O(3)](+) and [M + H - galactose residue](+). The fragmentation of the [M + H](+) ions of glycoporphyrins with a protected galactosyl residue leads mainly to the ions [M + H - CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2) - CO](+), [M + H - C(10)H(16)O(4)](+) and [M + H - protected galactose](+). The doubly charged ions [M + 2H](2+) fragment to give the doubly charged ions [porphyrin + H](2+) and the singly charged ions [M + H - protected galactose residue](+) and [M + H - CO(CH(3))(2)](+). For the porphyrins where the sugar structural unit is linked by an ester bond, [M + 2H](2+), ES-MS/MS showed a major and typical fragmentation corresponding to combined loss of a sugar structural unit and further loss of water, leading to the ion [M + 2H - sugar residue - H(2)O](2+), independently of the structure of the sugar structural unit. These results show that ES-MS/MS can be a powerful tool for the characterization of the sugar structural unit of glycoporphyrins, without the need for chemical hydrolysis.  相似文献   

7.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

8.
The preparation and characterization of three new macrocyclic ligands with pendant arms based on the [2+2] condensation of isophthalaldehyde and the corresponding triamine substituted at the central N-atom is reported. None of these new macrocyclic ligands undergo any equilibrium reaction, based on imine hydrolysis to generate [1+1] macrocyclic formation or higher oligomeric compounds, such as [3+3], [4+4], etc., at least within the time scale of days. This indicates the stability of the newly generated imine bond. In sharp contrast, the reaction of the [2+2] macrocyclic Schiff bases with Cu(I) generates the corresponding dinuclear Cu(I) complexes [Cu(2)(L(1))](2+), 1(2+); [Cu(2)(L(2))(CH(3)CN)(2)](2+), 2(2+); and [Cu(2)(L(3))(CH(3)CN)(2)](2+), 3(2+), together with their trinuclear Cu(I) homologues [Cu(3)(L(4))](3+), 4(3+); [Cu(3)(L(5))(CH(3)CN)(3)](3+), 5(3+); and [Cu(3)(L(6))(CH(3)CN)(3)](3+), 6(3+), where the [2+2] ligand has undergone an expansion to the corresponding [3+3] Schiff base that is denoted as L(4), L(5), or L(6). The conditions under which the dinuclear and trinuclear complexes are formed were analyzed in terms of solvent dependence and synthetic pathways. The new complexes are characterized in solution by NMR, UV-vis, and MS spectroscopy and in the solid state by X-ray diffraction analysis and IR spectroscopy. For the particular case of the L(2) ligand, MS spectroscopy is also used to monitor the metal assisted transformation where the dinuclear complex 2(2+) is transformed into the trinuclear complex 5(3+). The Cu(I) complexes described here, in general, react slowly (within the time scale of days) with molecular oxygen, except for the ones containing the phenolic ligands 2(2+) and 5(3+) that react a bit faster.  相似文献   

9.
Bis(2-hydroxyethylthio)alkanes and bis(2-hydroxyethylthioalkyl)ethers are important biological and environmental degradation products of sulfur mustard analogs known as sesqui- and oxy-mustards. We used atmospheric pressure chemical ionization mass spectrometry (APCI MS) to acquire characteristic spectra of these compounds in positive and negative ionization modes. Positive APCI mass spectra exhibited [M + H](+); negative APCI MS generated [M + O(2)](-), [M - H](-), and [M - 3H](-); and both positive and negative APCI mass spectra contained fragment ions due to in-source collision-induced dissociation. Product ion scans confirmed the origin of fragment ions observed in single-stage MS. Although the spectra of these compounds were very similar, positive and negative APCI mass spectra of the oxy-mustard hydrolysis product, bis(2-hydroxyethylthiomethyl)ether, differed from the spectra of the other compounds in a manner that suggested a rearrangement to the sesqui-mustard hydrolysis product, bis(2-hydroxyethylthio)methane. We evaluated the [M + O(2)](-) adduct ion for quantification via liquid chromatography-MS/MS in the multiple-reaction monitoring (MRM) mode by constructing calibration curves from three precursor/product ion transitions for all the analytes. Analytical figures of merit generated from the calibration curves indicated the stability and suitability of these transitions for quantification at concentrations in the low ng/mL range. Thus, we are the first to propose a quantitative method predicated on the measurement of product ions generated from the superoxide adduct anion of the sesqui-and oxy-mustard hydrolysis products.  相似文献   

10.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

11.
The previously ill-characterized [H(x)Rh(22)(CO)(35)](4-/5-) carbonyl cluster has been obtained as a byproduct of the synthesis of [H(3)Rh(13)(CO)(24)](2-) and effectively separated by metathesis of their sodium salts with [NEt(4)]Cl. Although the yields are modest and never exceed 10-15% (based on Rh), this procedure affords spectroscopically pure [H(3)Rh(22)(CO)(35)](5-) anion. Formation of the latter in mixture with other Rh clusters was also observed by electrospray ionization-mass spectrometry (ESI-MS) in the oxidation of [H(2)Rh(13)(CO)(24)](3-) with Cu(2+) salts. The recovery of further amounts of [H(3)Rh(22)(CO)(35)](5-) was hampered by too similar solubility of the salts composing the mixture. Conversely, the reaction in CH(3)CN of [H(2)Rh(13)(CO)(24)](3-) with [Cu(MeCN)(4)](+)[BF(4)](-) leads to the [H(2)Rh(13)(CO)(24){Cu(MeCN)}(2)](-) bimetallic cluster. The X-ray crystal structures of [H(4)Rh(22)(CO)(35)](4-), [H(3)Rh(22)(CO)(35)](5-), and [H(2)Rh(13)(CO)(24){Cu(MeCN)}(2)](-) are reported. From a formal point of view, the metal frame of the former two species can be derived by interpenetration along two orthogonal axes of two moieties displaying the structure of the latter. The availability of [H(8-n)Rh(22)(CO)(35)](n-) salts prompted their detailed chemical, spectroscopic, and electrochemical characterization. The presence of hydride atoms has been directly proved both by ESI-MS and (1)H NMR. Moreover, both [H(4)Rh(22)(CO)(35)](4-) and [H(3)Rh(22)(CO)(35)](5-) undergo distinctive electrochemically reversible redox changes. This allows to assess electrochemical studies as indisputable though circumstantial evidence of the presence of (1)H NMR-silent hydride atoms in isostructural anions of different charge.  相似文献   

12.
The gas-phase studies of transition-metal oxides continue to attract interest as such oxides are being used as catalysts in various oxidation processes. In this paper, singly negatively charged heteropolyoxotungstate and isopolyoxotungstate ion clusters were produced from Keggin-type polyoxotungstates by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS). It was found that the ion series [(PO(3))(WO(3))(n)](-), [(WO(3))(n)](-) and [(OH)(WO(3))(n)](-) were the main fragment ions in the mass spectra and the matrix greatly influenced the resulting cluster ion abundances. [(PO(3))(WO(3))(3)](-), [(WO(3))(3)](-) and [(OH)(WO(3))(4)](-) were the most intense ions in each series when 2-(4-hydroxyphenylazo)benzoic acid was the matrix, whereas [(PO(3))(WO(3))(4)](-), [(WO(3))(6)](-) and [(OH)(WO(3))(4)](-) were the most intense when dithranol (DIT) was the matrix. In addition, a new kind of hybrid ion [W(2)C(14)H(7)O(8)](-) was produced through the reaction of DIT and [(OH)(WO(3))](-) in the plume of the gas phase. These results highlight the utility of the MALDI-FT method for obtaining novel ion clusters and also show the stability of these clusters.  相似文献   

13.
The mononuclear +2 oxidation state metal complexes [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been synthesized and characterized crystallographically. The crystal structure of the Au(II) species [Au([9]aneS(3))(2)](BF(4))(2) shows a Jahn-Teller tetragonally distorted geometry with Au-S(1) = 2.839(5), Au-S(2) = 2.462(5), and Au-S(3) = 2.452(5) A. The related Ag(II) complex [Ag([18]aneS(6))](ClO(4))(2) has been structurally characterized at both 150 and 30 K and is the first structurally characterized complex of Ag(II) with homoleptic thioether S-coordination. The single-crystal X-ray structure of [Ag([18]aneS(6))](ClO(4))(2) confirms octahedral homoleptic S(6)-thioether coordination. At 150 K, the structure contains two independent Ag(II)-S distances of 2.569(7) and 2.720(6) A. At 30 K, the structure retains two independent Ag(II)-S distances of 2.615(6) and 2.620(6) A, with the complex cation retaining 3-fold symmetry. The electronic structures of [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been probed in depth using multifrequency EPR spectroscopy coupled with DFT calculations. For [Au([9]aneS(3))(2)](2+), the spectra are complex due to large quadrupole coupling to (197)Au. Simulation of the multifrequency spectra gives the principal g values, hyperfine (A) and quadrupole (P) couplings, and furthermore reveals non-co-incidence of the principal axes of the P tensor with respect to the A and g matrices. These results are rationalized in terms of the electronic and geometric structure and reveal that the SOMO has ca. 30% Au 5d(xy)() character, consistent with DFT calculations (27% Au character). For [Ag([18]aneS(6))](2+), detailed EPR spectroscopic analysis confirms that the SOMO has ca. 26% Ag 4d(xy)() character and DFT calculations are consistent with this result (22% Ag character).  相似文献   

14.
The interactions between formamide, which can be considered a prototype of a peptide function, and Sr(2+) have been investigated by combining nanoelectrospray ionization/mass spectrometry techniques and G96LYP DFT calculations. For Sr an extended LANL2DZ basis set was employed, together with a 6-311+G(3df,2p) basis set expansion for the remaining atoms of the system. The observed reactivity seems to be dominated by the Coulomb explosion process yielding [SrOH](+) + [HNCH](+), which are the most intense peaks in the MS/MS spectra. Nevertheless, additional peaks corresponding to the loss of HNC and CO indicate that the association of Sr(2+) to water or to ammonia leads to long-lived doubly charged species detectable in the timescale of these experimental techniques. The topology of the calculated potential energy surface permits us to establish the mechanisms behind these processes. Although the interaction between the neutral base and Sr(2+) is essentially electrostatic, the polarization triggered by the doubly charged metal ion results in the activation of several bonds, and favors different proton transfer mechanisms required for the formation of the [SrOH](+), [SrOH(2)](2+) and [SrNH(3)](2+) products.  相似文献   

15.
Son JH  Kwon YU  Han OH 《Inorganic chemistry》2003,42(13):4153-4159
By reacting Keggin-type polyoxometalate cluster anions H(2)W(12)O(40)(6)(-) (metatungstate) or Co(II)W(12)O(40)(6)(-) (tungstocobaltate) with the large aluminum cluster polycation [Al(30)O(8)(OH)(56)(H(2)O)(26)](18+), Keggin ion based molecular ionic compounds [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)][XW(12)O(40)](OH).nH(2)O (X = H(2) (1) and Co (2); n congruent with 20) and [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)][H(2)W(12)O(40)](2).55H(2)O (3) were obtained. The polygon-shaped cluster ions are packed alternately through intercluster hydrogen bonds as well as electrostatic interactions, leaving large pores, which result from the packing of large clusters. The clusters are arranged in square pyramidal geometries, showing face-to-face interactions between them. The isolation of metastable [delta-Al(13)O(4)(OH)(24)(H(2)O)(12)](7+) and the formation of a new transition metal substituted aluminum heteropolycation [W(2)Al(28)O(18)(OH)(48)(H(2)O)(24)](12+) in 1-3 result from the slow fragmentation and recombination of Al(30) in the presence of suitable counter cluster anions with similar shape and charge.  相似文献   

16.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

17.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

18.
The gas-phase reactions between Ca(2+) and glycine ([Ca(gly)](2+)) have been investigated through the use of mass spectrometry techniques and B3-LYP/cc-pWCVTZ density functional theory computations. The major peaks observed in the electrospray MS/MS spectrum of [Ca(gly)](2+) correspond to the formation of the [Ca,C,O(2),H](+), NH(2)CH(2) (+), CaOH(+), and NH(2)CH(2)CO(+) fragment ions, which are produced in Coulomb explosion processes. The computed potential energy surface (PES) shows that not only are these species the most stable product ions from a thermodynamic point of view, but they may be produced with barriers lower than for competing processes. Carbon monoxide is a secondary product, derived from the unimolecular decomposition of some of the primary ions formed in the Coulomb explosions. In contrast to what is found for the reactions of Ca(2+) with urea ([Ca(urea)](2+)), minimal unimolecular losses of neutral fragments are observed for the gas-phase fragmentation processes of [Ca(gly)](2+), which is readily explained in terms of the topological differences between their respective PESs.  相似文献   

19.
High field asymmetric waveform ion mobility spectrometry (FAIMS) provides atmospheric pressure, room temperature, low-resolution separation of gas-phase ions. The FAIMS analyzer acts as an ion filter that can continuously transmit one type of ion, independent of m/z. The combination of FAIMS with electrospray ionization and mass spectrometry (ESI-FAIMS-MS) is a powerful technique and is used in this study to investigate the cluster ions of leucine enkephalin (YGGFL). Separation by FAIMS of leucine enkephalin ions having the same m/z (m/z 556.5), [M + H]+ and [2M + 2H]2+, was observed. In addition, four complex ions of leucine enkephalin, [2M + H]+, [4M + 2H]2+, [6M + 3H]3+, and [8M + 4H]4+, all having m/z 1112, were shown to be separated in FAIMS. Fragmentation of ions as the result of harsh conditions within the mass spectrometer interface (FAIMS-MS) was shown to provide similar information to that obtained from MS/MS experiments in conventional ESI-MS.  相似文献   

20.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号