首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of micelles of Pluronic block copolymers in poly(ethylene glycol) (PEG) was studied using fluorescence, solubilization measurements, and frozen fracture electron microscopy (FFEM) methods at 40 degrees C. It was discovered that surfactants L44 (EO(10)PO(23)EO(10)), P85 (EO(26)PO(40)EO(26)), and P105 (EO(37)PO(56)EO(37)) can form micelles in PEG 200 (PEG with a nominal molecular weight of 200), and the critical micellization concentration (CMC) decreases with increasing molecular weight of the surfactants. The size of the micelles formed by these Pluronic block copolymers is in the range of 6-35 nm. The CMC values in PEG 200 are higher than those in aqueous solutions.  相似文献   

2.
Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the relationship D proportional, variant M0.59, which agrees quite consistently with the theoretically predicted power law, i.e., D proportional, variant M3/5. This result is in contrast to the well-established issue for linear block copolymers, where the relationship D proportional, variant M2/3 has been confirmed to hold both experimentally and theoretically. This means that chain elongation of each component block is suppressed considerably, owing to their looped conformation in strongly segregated bulk.  相似文献   

3.
We investigate the ordering of poly(styrene-b-methyl methacrylate) (PS-PMMA) lamellar copolymers (periodicity L0 = 46 nm) confined between a free surface and brushed poly(styrene-r-methyl methacrylate) silicon substrate. The processing temperature was selected to eliminate wetting layers at the top and bottom interfaces, producing approximately neutral boundaries that stabilize perpendicular domain orientations. The PS-PMMA film thickness (t = 0.5L0 − 2.5L0) and brush grafting density (Σ = 0.2–0.6 nm−2) were systematically varied to examine their impacts on in-plane and out-of-plane ordering. Samples were characterized with a combination of high-resolution microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering. In-plane order at the top of the film (quantified through calculation of orientational correlation lengths) improved with tn, where the exponent n increased from 0.75 to 1 as Σ decreased from 0.6 to 0.2 nm−2. Out-of-plane defects such as tilted domains were detected in all films, and the distribution of domain tilt angles was nearly independent of t and Σ. These studies demonstrate that defectivity in perpendicular lamellar phases is three-dimensional, comprised of in-plane topological defects and out-of-plane domain tilt, with little or no correlation between these two types of disorder. Strong interactions between the block copolymer and underlying substrate may trap both kinds of thermally generated defects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 339–352  相似文献   

4.
The graphoepitaxial assembly of cylinder‐forming block copolymers assembled into holes is investigated through theoretically informed coarse grained Monte Carlo simulations (TICG MC). The aim is to identify conditions leading to assembly of cylinders that span the entire thickness of the holes, thereby enabling applications in lithography. Three hole geometries are considered, including cylinders, elliptical cylinders, and capsule‐shaped holes. Four distinct morphologies of cylinder forming poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) block copolymers are observed in cylinders and elliptical holes, including cylinders, spheres, partial cylinders, and wall‐bound cylinders. Additional morphologies are observed in capsule‐shaped holes. PMMA cylinders that extend through the entire hole are found with PMMA‐wetting surfaces; a weak wetting condition is needed on the bottom of the hole and a strong wetting condition is necessary on the sides of the hole. Simulated are also used to explore the morphologies that arise when holes are overfilled, or when PMMA homopolymers are added in blends with copolymers. We find that overfilling can alter considerably the morphological behavior of copolymers in cylinders and, for blends; we find that when the homopolymer concentration is >10%, the range of conditions for formation of PMMA cylinders that extend through the entire hole is increased. In general, results from simulations (TICG) are shown to be comparable to those of self‐consistent (SCFT) calculations, except for conditions where fluctuations become important. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 430–441  相似文献   

5.
We have used ultra-small-angle scattering (USANS) and fluorescence microscopy to demonstrate the existence of a nonfractal large-scale structure in attractive micellar gels of poly(styrene)-poly(acrylic acid) block copolymers, which have some characteristics of attractive colloidal glasses. The nature of the large-scale structure appears to depend systematically on the strength of attraction. Our systems display scattering that follows I approximately q(x) in the low q regime, with x varying from approximately -3 to -4 as the strength of attraction is decreased. This scattering behavior appears to be the result of surface scattering from large, highly polydisperse aggregates with rough interfaces.  相似文献   

6.
7.
Complexation in solutions of strongly charged polyelectrolytes and diblock copolymers composed of oppositely charged and neutral blocks were studied via the molecular dynamics method. Stoichiometric micellar complexes formed in a dilute solution represent cylindrical brushes whose conformation is determined by the linear charge density on the polyelectrolyte and by temperature. As the concentration of macromolecules increases, the orientational ordering of anisotropic ionic micelles takes place. The complexation can induce the stiffening of the polyelectrolyte chain.  相似文献   

8.
Liquid crystalline triblock copolymers with LC inner block and amorphous outer blocks have been synthesized by “living” anionic polymerization and investigated using DSC, TEM, and small-angle x-ray diffraction. All samples of poly[styrene-block-2-(3-cholesteryloxycarbonyloxy) ethyl methacrylate-block-styrene] (PS-b-PChEMA-b-PS) show liquid crystalline behavior and phase separation between the blocks. Compared to triblock copolymers with PS inner block (PChEMA-b-PS-b-PChEMA) and diblock copolymers (PS-b-PChEMA) the LC block copolymers with PS outer blocks have the same properties. The LC behavior and the morphology do not depend on the block arrangement; they are only influenced by the volume fractions of the blocks. Those samples in which the liquid crystalline subphase is not continuous (spheres) only a nematic phase was found, whereas in all samples with a continuous liquid crystalline subphase, the smectic A phase of the homopolymer was observed. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
We investigated the segmental and terminal relaxation dynamics of a well‐characterized disordered diblock copolymer, poly(isoprene‐b‐vinyl ethylene) (PI‐PVE), and miscible blends of polyisoprene (PI)/poly(vinyl ethylene) (PVE), using dielectric and viscoelastic spectroscopies. Generally, the concentration fluctuation (CF) amplitude of a disordered diblock copolymer is smaller than that of the miscible blend, especially in a length scale longer than the size of the whole block chain. To test whether the difference in the CF amplitudes causes the difference in the segmental relaxation spectra, we compared the shape of the dielectric loss curves between PI‐PVE and PI/PVE with the same composition (PI/PVE ratio = 17:83). However, no appreciable difference was observed, indicating that the CF amplitudes in PI‐PVE and PI/PVE are not so different in the length scale of the segmental motions. We also examined the effect of distinct friction coefficients of the PI and PVE chains on the terminal relaxation dynamics by comparisons of the viscoelastic and dielectric normal mode relaxations in PI‐PVE. The former probes the whole chain motion and the latter probes motions of the PI block. Shift factors (aT) for the viscoelastic and dielectric relaxations were compared. The dielectric normal mode aT was found to have weaker temperature dependence than the viscoelastic aT, which indicates that the friction for the PI block chain is lower than the average friction for the PI‐PVE chain. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4084–4094, 2004  相似文献   

10.
A systematic study of formation of surface patterns in block copolymer thin layers after their exposure to solvent vapors was performed. The studied effect involves layers of thickness approximately equal to the ordering size of polymers - about 45 nm. Experiments were performed on three styrene - methacrylate derivative block copolymers, synthesized by living anionic polymerization: poly(4-octylstyrene)-block-poly(butyl methacrylate), poly(4-fluorostyrene)-block-poly(butyl methacrylate) and poly(p-octylstyrene)-block-poly(methyl methacrylate). The polymers were exposed to vapors of chloroform, 1,4-dioxane, hexane, acetone and tetrahydrofuran.  相似文献   

11.
In this article, we describe the synthesis of PEG‐b‐polyester star block copolymers via ring‐opening polymerization (ROP) of ester monomers initiated at the hydroxyl end group of the core poly(ethylene glycol) (PEG) using HCl Et2O as a monomer activator. The ROP of ε‐caprolactone (CL), trimethylene carbonate (TMC), or 1,4‐dioxan‐2‐one (DO) was performed to synthesize PEG‐b‐polyester star block copolymers with one, two, four, and eight arms. The PEG‐b‐polyester star block copolymers were obtained in quantitative yield, had molecular weights close to the theoretical values calculated from the molar ratio of ester monomers to PEG, and exhibited monomodal GPC curves. The crystallinity of the PEG‐b‐polyester star block copolymers was determined by differential scanning calorimetry and X‐ray diffraction. Copolymers with a higher arm number had a higher tendency toward crystallization. The crystallinity of the PEG‐b‐polyester star block copolymers also depended on the nature of the polyester block. The CMCs of the PEG‐b‐PCL star block copolymers, determined from fluorescence measurements, increased with increasing arm number. The CMCs of the four‐arm star block copolymers with different polyester segments increased in the order 4a‐PEG‐b‐PCL < 4a‐PEG‐b‐PDO < 4a‐PEG‐b‐PLGA < 4a‐PEG‐b‐PTMC, suggesting a relationship between CMC and star block copolymer crystallinity. The partition equilibrium constant, Kv, which is an indicator of the hydrophobicity of the micelles of the PEG‐polyester star block copolymers in aqueous media, increased with decreasing arm number and increasing crystallinity. A key aspect of the present work is that we successfully prepared PEG‐b‐polyester star block copolymers by a metal‐free method. Thus, unlike copolymers synthesized by ROP using a metal as the monomer activator, our copolymers do not contain traces of metals and hence are more suitable for biomedical applications. Moreover, we confirmed that the PEG‐b‐polyester star block copolymers form micelles and hence may be potential hydrophobic drug delivery vehicles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2084–2096, 2008  相似文献   

12.
A new method for quantitative etching of the poly(dimethylsiloxane) block in polystyrene-poly(dimethylsiloxane) (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride renders a nanoporous material (NPM) with the remaining glassy PS maintaining the original bulk morphology. 1H NMR, mass difference, size exclusion chromatography, and X-ray photoelectron spectroscopy were used to characterize the materials before and after etching. NPMs containing spherical and gyroid cavities were prepared, as ascertained by small-angle X-ray scattering. This is the first report on block copolymer-based NPM films of millimeter thickness containing secluded spherical holes. Surface images by AFM and SEM are consistent with the SAXS findings.  相似文献   

13.
Dynamic light scattering (DLS) has been used to explore the properties of asymmetric styrene-isoprene (SI) block copolymers in concentrated solutions. Concentrations were always well below those necessary to access the order–disorder transition in neutral good solvents. The samples include SI (10-50), SI (36-9), and SIS (10-100-10), where the numerical suffixes denote the block molecular weights in kilodaltons; experimental emphasis was placed on SI (10-50). The DLS intensity correlation functions in the neutral good solvents, THF and toluene, were dominated by a slow mode that first appeared at a concentration c+ ≈ 4 c*, where c* is the coil overlap concentration. The decay rate of this mode scaled approximately as the third power of the scattering wavevector, and the excess scattered intensity decreased with increased scattering angle. These results were tentatively ascribed to the onset of substantial concentration fluctuations, that exhibited cylindrical, or wormlike structures. Measurements in solvents of known selectivity, dioxane and cyclohexane, and on a copolymer of the opposite composition, SI (36-9), indicated that the intermolecular association was driven by the effectively repulsive interactions between styrene and isoprene segments, rather than by solvent selectivity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1831–1837, 1998  相似文献   

14.
王志达 《高分子科学》2017,35(5):641-648
This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition.The results show that the vesicles formed from diblock copolymer (di-BC) of PS-b-PAA remain with vesicular morphology,although the average size decreases,with the increase of stirring rate.However,the multi-compartment micelles (MCMs) formed from tri-block copolymer (tri-BC) of PS-b-P2VP-b-PEO are quite intricate,in which the copolymer first self-assembles into spheres,then to clusters,to large compound micelles (LCMs),and finally back to spheres,as stirring rate increases from 100 r/min to 2200 r/min.Formation mechanism studies manifest that vesicles form simultaneously as water is added to the di-BC solution,termed as direct-assembly,and remain with vesicular structure in the flowing process.While for the PS-b-P2VP-b-PEO copolymer,spherical micelles at initial stage can further assemble into clusters and LCMs,termed as second-assembly,due to the speeding-up-aggregation of the favorable stirring.As a result,an invert V-relationship between tri-BC micelle dimension and stirring rate is observed in contrast to the non-linear decreasing curve of di-BC vesicles.It is by investigating these various amphiphilic BCs that the understanding of shear dependence of size and morphology of micelles is improved from self-assembly to second-assembly process.  相似文献   

15.
The self-assembly of Pluronic block copolymers in dispersions of single-wall carbon nanotubes (SWNT) was investigated by spin probe electron paramagnetic resonance (EPR) spectroscopy. Nitroxide spin labeled block copolymers derived from Pluronic L62 and P123 were introduced in minute amounts into the dispersions. X-band EPR spectra of the SWNT dispersions and of native polymer solutions were measured as a function of temperature. All spectra, below and above the critical micelle temperature (CMT), were characteristic of the fast limit motional regime. The temperature dependence of the 14N isotropic hyperfine coupling, aiso, and the rotational correlation time, tauc, were determined. It was observed that, below the CMT, EPR does not distinguish between chains adsorbed on SWNT and free chains. Above CMT, substantial differences were observed: in the native solution, the Pluronics spin labels experience only one environment, Sm, assigned to spin labels in the corona of the Pluronic micelle, whereas in the SWNT dispersions, in addition to Sm, a second population of nonaggregated, individual chains, Si, is observed. The relative amounts of Sm and Si were found to depend on the relative concentrations of the Pluronic and SWNT. Furthermore, the aggregates formed in the SWNT dispersions do not show the typical increase in chain-end mobility as a function of temperature, observed in the post-CMT regime of the native Pluronic solutions. This suggests a larger dynamical coupling among aggregated chains in the presence of the SWNT as compared to the native micelles. The overall findings are consistent with the formation of a new type of aggregates, composed of a SWNT-polymer hybrid.  相似文献   

16.
Dynamic viscoelastic properties of S—B—S block copolymers were measured in the tensile and shear deformation modes. Between the glass transitions of the polybutadiene and polystyrene domains the ratio of storage moduli E'/G' in tension and in shear for the same polymer varied from 3 to more than 30, depending on sample preparation. For films cast from good solvents this ratio was near 3; large ratios resulted from deposition from poor polybutadiene solvents or from compression molding. Above the polystyrene glass transition, E'/G' approached 3 for all samples. The effect is ascribed to various degrees of polystyrene domain connectivity. Electron micrographs confirm this interpretation. For morphologies of high polystyrene domain connectivity, the loss tangent in tension is heavily weighted by mechanical losses in the polystyrene phase; the loss tangent in shear is affected only moderately by differences in domain morphology.  相似文献   

17.
18.
19.
20.
The structure and rheological properties of a poly(dimethylsiloxane)-graft-poly(oxyethylene) copolymer at high concentrations in block-selective solvents were studied by small-angle X-ray scattering (SAXS) and rheometry. Analysis of SAXS data indicates that quasispherical, reverse micellar aggregates (with no ordered packing) are present in concentrated solutions of the copolymer in nonpolar solvents, and that upon addition of water, the size of such aggregates increases due to the solubilization inside the micellar cores. The viscosity of concentrated polymer solutions increases exponentially as water is added, and finally, viscoelastic, gel-like behavior is found in the vicinity of the phase separation limit. It was found that small silver nanoparticles with an average diameter of ≈3 nm can be synthesized inside the copolymer aggregates without the need of a reducing agent; namely, particles embedded in a viscoelastic matrix are obtained. The synthesis seems to follow first-order kinetics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号