首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Toxicity of metals to aquatic organisms is dependent on both external factors, such as exposure concentration and water quality parameters, and intracellular processes including specific metal-binding sites and detoxification. Current models used to predict copper toxicity in microalgae do not adequately consider these intracellular processes. This study compared the copper-binding proteins from four species of marine microalgae, Dunaliella tertiolecta, Tetraselmis sp., Phaedactylum tricornutum and Ceratoneis closterium, in controls (no added copper) and following a 72-h exposure to copper (sufficient to inhibit growth by approximately 50 %). Cells were lysed by sonication, which was optimised to obtain 54–94 % cell rupture for the different algae. Cell lysates were processed by immobilised metal affinity chromatography (IMAC) using Cu2+ as the bound metal (i.e. Cu-IMAC). Bound proteins were subsequently analysed by SDS-PAGE, comparing proteins recovered from algae that were exposed to copper versus untreated control cells. Individual proteins for which copper exposure resulted in changes to proteins present were excised from gels and further analysed by nano LC ESI-MS/MS; proteins were identified using the Mascot database. Proteins identified in this way included heat-shock proteins, rubisco, α- and β-tubulins and ATP synthase (β subunit). The results established that Cu-IMAC is a useful approach to identify proteins involved in copper binding in algae. This study identified several proteins that may play an active role in responses to copper toxicity in marine microalgae.
Figure
Diagram representing the sample preparation steps from algal growth and copper exposure through to mass spectrometry (MS) analysis  相似文献   

3.
Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.  相似文献   

4.
The complexation behavior of four systems involving cadmium(II) or zinc(II) in aqueous solutions with the biological buffers 3-[N,N-bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid (DIPSO), and [(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid (TAPS) was studied by direct current polarography (DCP) and glass electrode potentiometry (GEP), at 25.0 ± 0.1 °C and ionic strength 0.1 mol·dm?3 KNO3. Except for the Cd–TAPS system, for which full characterization of the system was possible either by DCP or GEP, full characterization of the other metal-buffer systems (Zn–DIPSO, Zn–TAPS and Cd–DIPSO) was only possible using DCP. For Zn-buffers systems, ZnL+ and $ {\text{ZnL(OH)}}_{2}^{ - } $ ZnL(OH) 2 ? (where L stands for buffer) were identified. For the Zn–DIPSO system, the overall stability constant values (as log10 β) are 2.1 ± 0.2 and 13.4 ± 0.2, respectively. For the Zn–TAPS system, the overall stability constants values (as log10 β) are 2.4 ± 0.1 and 12.9 ± 0.3, respectively. For the Cd–DIPSO system, the overall stability constants values (as log10 β) of CdL+ and CdL(OH) are 2.9 ± 0.1 and 6.9 ± 0.3, respectively. For the Cd–TAPS system, only the species CdL+ was identified with log10 β = 2.5 ± 0.1.  相似文献   

5.
Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.  相似文献   

6.
A radiochemical purification procedure was developed for the separation of enriched cadmium (111Cd and 112Cd) from natural copper that used as backing; and was based upon the chromatographic adsorption. The separation of copper from cadmium was studied in this work. The ions were selectively separated from aqueous solution. Ion-exchange chromatography was employed as a column (1.5 cm i.d. and 15 cm length) with AG1-X8 resin (chloride form, 100–200 mesh) and a flow rate of 1–2 ml/min throughout the separation. 6 M HCl media was used for the adsorption of Cd and Cu on the resin. Then, Cu was eluted by 2 M HCl and Cd by 100 ml 0.5 M HNO3. The amount of Cu and Cd ions in the final solution (0.5 M HNO3) were measured by pulse polarographic method and the concentration of Cu was found to be <0.1 ppm. The Cd was quantitatively recovered and the recovery yield from ion-exchange chromatography was greater than 96 %.  相似文献   

7.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

8.
Cadmium and nickel ions have been preconcentrated on Geobacillus thermoleovorans subsp. stromboliensis, immobilized on Amberlite XAD-4, and were determined by flame atomic absorption spectrometry (FAAS). Parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of solution and the matrix interference effect on retention have been studied, and extraction conditions were optimized. Elution of Cd(II) and Ni(II) from minicolumns was carried out with 1.0 M hydrochloric acid or nitric acid with recoveries from 97 to 100%. The sorption capacity is 0.0373 and 0.0557 mmol g?1 for Cd(II) and Ni(II), respectively. The detection limits were 0.24 μg L?1 for cadmium and 0.3 μg L?1 for nickel. The relative standard deviations of the procedure were below 10%. The procedure was validated by analyzing certified reference materials and applied to the determination of Cd(II) and Ni(II) in natural water and food samples.  相似文献   

9.
The potential removal and preconcentration of lead(II), cadmium(II), and chromium(III) ions from wastewaters were investigated and explored. Magnetite nanoparticles were chemically modified with p-nitro aniline. The aniline-coated magnetite nanoparticles (ANMNPs) were fully characterized by FT-IR, XRD, SEM, and TEM measurements. Batch studies were performed to address various experimental parameters for the removal and determination of these ions. ANMNPs showed high tendency to investigated metal ions, in this order: Cr(III) > Cd(II) > Pb(II), owing to the strong contribution of surface loaded aniline. The potential applications of ANMNPs adsorbent for removal and preconcentration of Pb(II), Cr(III), and Cd(II) from wastewaters as well as drinking tap water samples were successfully accomplished giving recovery values of (98–101 %), without any noticeable interference of the wastewater or drinking tap water matrices.  相似文献   

10.
A natural cadmium foil was irradiated by 42 MeV α-particles to produce 113,117mSn, 111,113m,114mIn simultaneously in the target matrix. After the complete decay of short lived radionuclides, long-lived NCA products were separated sequentially from the bulk cadmium by liquid–liquid extraction using di-(2-ethylhexyl)phosphoric acid (HDEHP) dissolved in cyclohexane as organic phase and HCl as aqueous phase. At the optimum condition, 10?2 M HCl and 5 % HDEHP, NCA In along with NCA Sn radionuclides (75 %) were separated from the bulk Cd resulting to high separation factors of 2.7 × 104 (D In/D Cd) and 500 (D Sn/D Cd), respectively. The NCA In was stripped back completely to the aqueous phase by 6 M HCl leaving NCA Sn in the HDEHP phase with a separation factor (D Sn/D In) of 3.94 × 106.  相似文献   

11.
Ultrafine carbon black (ufCB) is a potential hazard to the lung. It causes changes in protein expression and it increases alveolar-capillary permeability in the lung. Label-free quantitative proteomic methods allow a sensitive and accurate analytical method for identifying and quantifying proteins in a protein mixture without chemically modifying the proteins. We used a label-free quantitative proteomic approach that combined and aligned LC-MS and LC-MS/MS spectra to analyze mouse bronchoalveolar lavage fluid (BALF) protein changes associated with exposure to ufCB. We developed a simple normalization method for quantification without spiking the internal standard. The intensities of unchanged peptides were used as normalization factors based on a statistical method to avoid the influence of peptides changed because of ufCB. LC-MS/MS spectra and then database searching were used to identify proteins. The relative abundances of the aligned peptides of identified proteins were determined using LC-MS spectra. We identified 132 proteins, of which 77 are reported for the first time. In addition, the expression of 15 inflammatory proteins and surfactant-associated proteins was regulated (i.e., 7 upregulated and 8 downregulated) compared with the controls. Several proteins not previously reported provide complementary information on the proteins present in mouse BALF, and they are potential biomarkers for the understanding of mechanisms involved in ufCB-induced lung disorders hypothesize that using the label-free quantitative proteomic approach introduced here is well suited for more rigorous, large-scale quantitative analysis of biological samples. We hypothesize that this label-free quantitative proteomic approach will be suited for a large-scale quantitative analysis of biological samples.  相似文献   

12.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

13.
Cd(NO3)2 undergoes a phase transition at 160°C. The high temperature form is cubic and isomorphic with M(NO3)2 (M = Ba, Ca, Sr, Pb). The crystal structure of the low temperature phase has been solved by X-ray diffraction at 20°C, using 774 independent reflections collected with a 4-circle diffractometer. The dimensions of the orthorhombic unit cell are: a ? c = 7.5073 (14) Å, b = 15.3692 (35) Å, Z = 8, space group Pca21. The structure has been refined to the final weighted R = 0.044. The cadmium atoms are nearly in a face-centered arrangement. Each cadmium is octahedrally surrounded by six oxygen, the CdO distances varying from 2.34 to 2.46 Å. Each nitrate group belongs through its three oxygens to three different octahedra. The structural change cubic Cd(NO3)2 → orthorhombic Cd(NO3)2 is characterized by a small rotation of NO3 groups in their plane; the face-centered array of cadmium atoms is only slightly modified. The coordination of cadmium atoms changes from 12 to 6, and the approximate doubling of parameter (b) as well as the difference of symmetry can be explained by two different directions of rotation of the NO3 groups situated in the same plane.  相似文献   

14.
Two spring wheat varieties Ningchun 4 and Chinese Spring with good and poor resistance to abiotic stress, respectively, were used to investigate proteomic changes in the developing grains under drought stress by a comparative proteomics approach. A total of 152 protein spots showed at least twofold differences in abundance on two-dimensional electrophoresis (2-DE) maps, of which 28 and 68 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry, respectively. Of the 96 identified protein spots, six different expression patterns were found and they were involved in stress/defense/detoxification, carbohydrate metabolism, photosynthesis, nitrogen metabolism, storage proteins and some other important functions. Comparative proteomic analysis revealed that under the drought conditions the decreased degree of ascorbate peroxidases was more significant in Chinese Spring than in Ningchun 4 during grain development whereas translationally controlled tumor protein, which was significantly upregulated at 14 DAF, was present in Ningchun 4 and absent in Chinese Spring. The Rubisco large subunit displayed an upregulated expression pattern in Ningchun 4. In addition, two drought-tolerant proteins, triosephosphate isomerase and oxygen-evolving complex showed B and F type expression patterns in Chinese Spring, but D and B types in Ningchun 4, respectively. These differentially expressed proteins might be responsible for the stronger drought resistance of Ningchun 4 compared to Chinese Spring.  相似文献   

15.
《Analytical letters》2012,45(10):1562-1572
A rapid and sensitive method for the determination of trace levels of cadmium in cigarettes, soil, and blood samples by flame atomic absorption spectrometry (FAAS) has been developed. It is based on the online sorption of Cd(II) ions on a minicolumn packed by sodium dodecyl sulfate–coated alumina modified with dithizone. The optimum experimental parameters for the adsorption and desorption of cadmium were investigated. The recovery obtained was found to be 96% with preconcentration factor of 150. The calibration curve was linear between 50–600 µg/L Cd with a detection limit of 3 µg/L, sample frequency of 30 h?1 and reuse of column for 10 times without loss of sensitivity. The accuracy of the method was confirmed by applying the standard addition method and quantitative recoveries (95–99%) were obtained.  相似文献   

16.
An interdisciplinary approach was employed to monitor the concentration and the effects of butyltin compounds in mussels (Mytilus galloprovincialis). Tissues from animals exposed to a marine area (Vado Ligure harbour) with a high concentration of tributyltin (TBT) were analysed and compared with control samples. TBT concentrations were measured by gas chromatography–mass spectrometry and the protein pattern in gill tissues was studied by proteomic analysis. Several proteomic signatures associated with contaminant exposure were observed; spots that were significantly increased in all contaminated samples were identified by mass spectrometry as fragments of β-tubulin. The degradation of β-tubulin was then confirmed by western blot analysis with specific anti-β-tubulin antibody. The effects observed on mussel gills after exposure in the TBT-polluted area are discussed.  相似文献   

17.
《Analytical letters》2012,45(11):1952-1964
The distributions of cadmium and lead in marine sediments, surrounding soil, stones, and atmospheric particulate matter were determined at different locations in Split, Croatia. The determination of cadmium and lead was performed by flame atomic absorption spectrometry whereas atmospheric particulate matter samples were analyzed by inductively coupled plasma–optical emission spectrometry. Cadmium concentrations in the stones and soil were between 0.2 to 0.6 µg g?1 and 0.2 to 0.9 µg g?1. The concentration in the atmospheric particulate matter were <0.2 µg m?2 d?1(detection limit) to 1.4 µg m?2 d?1. Lead concentrations in marine sediments, stones, soil, and atmospheric particulate matter ranged from 31.2 to 144.4 µg g?1, 9.3 to 29.4 µg g?1, 11.3 to 66.1 µg g?1, and 0.5 to 241.4 µg m?2 d?1, respectively. The relationship between determined parameters was established using principal component analysis and the results are in agreement with the assumption that anthropogenic sources play important roles for lead and cadmium distribution.  相似文献   

18.
《Analytical letters》2012,45(1-3):431-445
This paper presents a novel non-extractive procedure for cadmium determination in a sequential injection (SI) system. The reaction is based on the formation of a complex by Cd(II), iodide ions, and 2-[2-(4-dimethylamino-phenyl)-vinyl]-1-ethyl-quinolinium iodide (R), commonly known as Quinaldine red. Complex-formation results in significant changes in the UV-Vis spectrum of R: the peak is significantly broadened and a shoulder appears near 618 nm. It is important to emphasize that no surfactant addition is needed for solubilization of the system. Under the optimum reaction conditions the calibration plot was linear in the range 1.12–11.24 mg L?1 Cd and the detection limit was 0.24 mg L?1 Cd. The method was tested for the analysis of mineral water and pharmaceutical samples spiked with cadmium.  相似文献   

19.
Quantum dots (QDs) belong to a new class of fluorescent agent for biochemical, medicinal or other purposes. However, QDs based on cadmium or other metals can be risky for an organism. As one of the mechanism how to detoxify cadmium-based QDs expression of metallothioneins (MT) can be considered. Due to high affinity of metallothionein to cadmium(II) ions, we attempted to develop an approach for studying of possible interaction with QDs. We prepared QDs with CdTe core and studied the interaction with MT, which we isolated from livers of Cd-administered rabbits. To study the interaction, we used the mixture of both components MT (3.6 μM): CdTe QDs (0, 0.34, 0.68, 1.02, 1.36, 1.7, 2.04 and 2.47 μM). The mixtures were studied by spectrophotometry within the range from 200 to 750 nm with detected maxima at 260 and 505 nm. Same mixtures were also analysed by differential pulse voltammetry Brdicka reaction, which supported data from spectrophotometry. Subsequently, we used fast protein liquid chromatography for purification of protein–quantum dot conjugates. We obtained the different chromatograms for (1) Apo MT, (2) CdTe QDs and (3) MT–QD complex. We also collected the fractions and subsequently analysed them on the content of Cd and MT, which confirmed the formation of CdTe QDs–MT complex.  相似文献   

20.
《Analytical letters》2012,45(9):1294-1309
Abstract

This work reports the simultaneous determination of lead and cadmium in canned foods samples using square-wave anodic striping voltammetry (SWASV) on a bismuth film electrode (BiFE). The metal ions and bismuth were simultaneously deposited by reduction at ?1 V on a rotating carbon-paste disk electrode. Then, the preconcentrated metals were oxidized by scanning the potential of the electrode from ?1 to ?0.4 V using a square-wave waveform. The electrode displayed excellent linear behavior in the examined concentration range, from 5 to 150 µg/L of cadmium and lead (r2 = 0.999 for both). Using the optimized conditions, the limits of detection were 0.27 µg/L for cadmium and 0.35 µg/L for lead. The reproducibility of the proposed sensor, evaluated in terms of relative standard deviation (RSD), were 5.8% and 3.7% of Cd and Pb, respectively for five measurements. Finally, the system based on BiFEs combined with rotating disk electrode was applied to determination of lead and cadmium in canned food samples. The results obtained were validated by inductively coupled plasma optical emission spectroscopy (ICP-OES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号