首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superconducting qubits are Josephson junction-based circuits that exhibit macroscopic quantum behavior and can be manipulated as artificial atoms.Benefiting from the well-developed technology of microfabrication and microwave engineering,superconducting qubits have great advantages in design flexibility,controllability,and scalability.Over the past decade,there has been rapid progress in the field,which greatly improved our understanding of qubit decoherence and circuit optimization.The single-qubit coherence time has been steadily raised to the order of 10 to 100μs,allowing for the demonstration of high-fidelity gate operations and measurement-based feedback control.Here we review recent progress in the coherence and readout of superconducting qubits.  相似文献   

2.
The Josephson qubit based on a superconducting single charge transistor inserted in a low-inductance superconducting loop is considered. The loop is inductively coupled to a radio-frequency driven tank circuit enabling the readout of the qubit states by measuring the effective Josephson inductance of the transistor. The effect of qubit dephasing and relaxation due to electric and magnetic control lines, as well as the measuring system, is evaluated. Recommendations for qubit operation with minimum decoherence are given.  相似文献   

3.
We propose a theoretical scheme to observe the loss of quantum coherence through the coupling of the superconducting charge qubit system to a nanomechanical resonator (NAMR), which has already been successfully fabricated in experiment and is convenient to manipulate. With a similar form to the usual cavity QED system, this qubit-NAMR composite system with engineered coupling exhibits the collapse and revival phenomenon in a progressive decoherence process. Corresponding to the two components of superposition of the two charge eigenstates, the state of the nanomechanical resonator evolves simultaneously towards two distinct quasi-classical states. Therefore the generalized which way detection by the NAMR induces the quantum decoherence of the charge qubit.Received: 21 May 2004, Published online: 9 September 2004PACS: 03.65.-w Quantum mechanics - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects - 03.67.Lx Quantum computation - 85.25.Dq Superconducting quantum interference devices (SQUIDs)  相似文献   

4.
Ruo-Ting Yang 《中国物理 B》2022,31(9):98501-098501
Rapid single flux quantum (RSFQ) circuits are a kind of superconducting digital circuits, having properties of a natural gate-level pipelining synchronous sequential circuit, which demonstrates high energy efficiency and high throughput advantage. We find that the high-throughput and high-speed performance of RSFQ circuits can take the advantage of a hardware implementation of the encryption algorithm, whereas these are rarely applied to this field. Among the available encryption algorithms, the advanced encryption standard (AES) algorithm is an advanced encryption standard algorithm. It is currently the most widely used symmetric cryptography algorithm. In this work, we aim to demonstrate the SubByte operation of an AES-128 algorithm using RSFQ circuits based on the SIMIT Nb03 process. We design an AES S-bbox circuit in the RSFQ logic, and compare its operational frequency, power dissipation, and throughput with those of the CMOS-based circuit post-simulated in the same structure. The complete RSFQ S-bbox circuit costs a total of 42237 Josephson junctions with nearly 130 Gbps throughput under the maximum simulated frequency of 16.28 GHz. Our analysis shows that the frequency and throughput of the RSFQ-based S-bbox are about four times higher than those of the CMOS-based S-bbox. Further, we design and fabricate a few typical modules of the S-box. Subsequent measurements demonstrate the correct functioning of the modules in both low and high frequencies up to 28.8 GHz.  相似文献   

5.
官伯然 《物理》2000,29(5):297-299
超导数字计算机是下世纪超级机的发展方向 ,它在计算机科学发展的历史上将具有十分重要的意义,文章简要介绍了快速单磁通量子(RSFQ)超导计算机研究的发展、RSFQ逻辑电路的基本原理、超导计算机的基本结构以及超导数字计算机的展望。  相似文献   

6.
We report on high quality local tunnel spectroscopy measurements in superconductors using in-situ fabricated superconducting tips as counterelectrode. The experiments were made at very low temperatures using a dilution refrigerator and a 3He cryostat. Spectra obtained with superconducting tip and sample of Al show that the spectroscopic resolution of our set-up is of 15 eV. Following the observation of Josephson current in tunnelling regime (with tips of Pb and of Al), we discuss the feasibility of Scanning Josephson Spectroscopy with atomic size resolution. Experiments showing new applications of these superconducting tips under applied external magnetic fields are also reported.Received: 12 May 2004, Published online: 7 September 2004PACS: 73.63.Rt Nanoscale contacts - 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) - 74.25.Ha Magnetic properties - 74.50. + r Tunnelling phenomena; point contacts, weak links, Josephson effects - 74.78.Na Mesoscopic and nanoscale systems - 74.80.Fp Point contacts; SN and SNS junctions  相似文献   

7.
We investigate the Josephson effect between two coupled superconductors, coupled by the tunneling of pairs of electrons, in the regime that their energy level spacing is comparable to the bulk superconducting gap, but neglecting any charging effects. In this regime, BCS theory is not valid, and the notion of a superconducting order parameter with a well-defined phase is inapplicable. Using the density matrix renormalization group, we calculate the ground state of the two coupled superconductors and extract the Josephson energy. The Josephson energy is found to display a reentrant behavior (decrease followed by increase) as a function of increasing level spacing. For weak Josephson coupling, a tight-binding approximation is introduced, which illustrates the physical mechanism underlying this reentrance in a transparent way. The DMRG method is also applied to two strongly coupled superconductors and allows a detailed examination of the limits of validity of the tight-binding model.Received: 8 September 2003, Published online: 28 May 2004PACS: 74.20.-z Theories and models of superconducting state - 74.78.-w Superconducting films and low-dimensional structures - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects  相似文献   

8.
The aim of this paper is to explain the non monotonic temperature dependence of the self-consistent superconducting gap of ferromagnet/superconductor/ferromagnet (F/S/F) trilayers with weak ferromagnets in the parallel alignment (equivalent to F/S bilayers). We show that this is due to Andreev bound states that compete with the formation of a minigap. Using a recursive algorithm we discuss in detail the roles of various parameters (thicknesses of the superconductor and ferromagnets, relative spin orientation of the ferromagnets, exchange field, temperature, disorder, interface transparencies).Received: 23 January 2004, Published online: 29 June 2004PACS: 74.78.Na Mesoscopic and nanoscale systems - 74.45. + c Proximity effects; Andreev effect; SN and SNS junctions - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects  相似文献   

9.
We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and backaction are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured relaxation times of the order of 80 micros.  相似文献   

10.
We propose a scheme for generating squeezed states based on a superconducting hybrid system.Our system consists of a nanomechanical resonator,a superconducting flux qubit,and a superconducting transmission line resonator.Using our proposal,one can easily generate the squeezed states of the nanomechanical resonator.In our scheme,the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy.The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state,which can greatly decrease the effect of the decoherence of the flux qubit on the squeezed efficiency.  相似文献   

11.
文中对 RSFQ中十分重要的也是最基本的电路 JTL超导约瑟夫逊结传输线如何传输和放大 SFQ信号脉冲的工作原理给予了详尽阐述 ;并在此基础上对 JTL存在的某些特性 ,如“推斥”效应和时间抖动现象进行了计算机仿真研究  相似文献   

12.
Solid-state qubits have the potential for the large-scale integration and for the flexibility of layout for quantum computing. However, their short decoherence time due to the coupling to the environment remains an important problem to be overcome. We propose a new superconducting qubit which incorporates a spin-electronic device: the qubit consists of a superconducting ring with a ferromagnetic pi junction which has a metallic contact and a normal Josephson junction with an insulating barrier. Thus, a quantum coherent two-level state is formed without an external magnetic field. This feature and the simple structure of the qubit make it possible to reduce its size leading to a long decoherence time.  相似文献   

13.
We present the design of a superconducting flux qubit with a large loop inductance. The large loop inductance is desirable for coupling between qubits. The loop is configured into a gradiometer form that could reduce the interference from environmental magnetic noise. A combined Josephson junction, i.e., a DC-SQUID is used to replace the small Josephson junction in the usual 3-JJ (Josephaon junction) flux qubit, leading to a tunable energy gap by using an independent external flux line. We perform numerical calculations to investigate the dependence of the energy gap on qubit parameters such as junction capacitance, critical current, loop inductance, and the ratio of junction energy between small and large junctions in the flux qubit. We suggest a range of values for the parameters.  相似文献   

14.
An interaction-free measurement protocol is described for a quantum circuit consisting of a superconducting qubit and a readout Josephson junction. By measuring the state of the qubit, one can ascertain the presence of a current pulse through the circuit at a previous time without any energy exchange between the qubit and the pulse.  相似文献   

15.
The Nambu spinor Greens function approach is applied to studying the proximity effect in ferromagnet/d-wave superconductor (FM/d-wave SC) junctions. It is found that the magnitude of the proximity effect depends to a great extent on the orientation of the SC crystal with respect to the interface normal. On the FM side, near the interface there are two different types of density of states (DOS) with superconducting features. On the SC side, the DOS near the interface is spin dependent, indicating a local coexistence of weak ferromagnetism and d-wave superconductivity.Received: 10 February 2004, Published online: 12 July 2004PACS: 74.45. + c Proximity effects; Andreev effect; SN and SNS junctions - 74.50. + r Tunneling phenomena; point contacts, weak links, Josephson effects - 74.20.Rp Pairing symmetries (other than s-wave)  相似文献   

16.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ~ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.  相似文献   

17.
We introduce a new design concept for superconducting phase quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single-shot measurements.  相似文献   

18.
RSFQ的初步研究   总被引:1,自引:1,他引:0  
RSFQ应用于高速电子计算机是近年来活跃在低温超导电子学领域的新兴课题。文中从约瑟夫逊效应的等效模型出发 ,阐述了 RSFQ电路的基本基理及基于节点约瑟夫逊相位的数值模拟方法 ,并把它用于一个 RSFQ单向缓冲器的瞬态分析 ,给出了其相位和电压波形  相似文献   

19.
Various physical systems were proposed for quantum information processing. Among those nanoscale devices appear most promising for integration in electronic circuits and large-scale applications. We discuss Josephson junction circuits in two regimes where they can be used for quantum computing. These systems combine intrinsic coherence of the superconducting state with control possibilities of single-charge circuits. In the regime where the typical charging energy dominates over the Josephson coupling, the low-temperature dynamics is limited to two states differing by a Cooper-pair charge on a superconducting island. In the opposite regime of prevailing Josephson energy, the phase (or flux) degree of freedom can be used to store and process quantum information. Under suitable conditions the system reduces to two states with different flux configurations. Several qubits can be joined together into a register. The quantum state of a qubit register can be manipulated by voltage and magnetic field pulses. The qubits are inevitably coupled to the environment. However, estimates of the phase coherence time show that many elementary quantum logic operations can be performed before the phase coherence is lost. In addition to manipulations, the final state of the qubits has to be read out. This quantum measurement process can be accomplished using a single-electron transistor for charge Josephson qubits, and a d.c.-SQUID for flux qubits. Recent successful experiments with superconducting qubits demonstrate for the first time quantum coherence in macroscopic systems.  相似文献   

20.
We study a readout scheme of a superconducting flux qubit state with a Cooper pair box as a transmon. The qubit states consist of the superpositions of two degenerate states where the charge and phase degrees of freedom are entangled. Owing to the robustness of the transmon against external fluctuations, our readout scheme enables the quantum non-demolition and single-shot measurement of flux qubit states. The qubit state readout can be performed by using the nonlinear Josephson amplifiers after a π/2 rotation driven by an ac electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号