首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recently introduced nonlinear Fokker-Planck equation, derived directly from a master equation, comes out as a very general tool to describe phenomenologically systems presenting complex behavior, like anomalous diffusion, in the presence of external forces. Such an equation is characterized by a nonlinear diffusion term that may present, in general, two distinct powers of the probability distribution. Herein, we calculate the stationary-state distributions of this equation in some special cases, and introduce associated classes of generalized entropies in order to satisfy the H-theorem. Within this approach, the parameters associated with the transition rates of the original master-equation are related to such generalized entropies, and are shown to obey some restrictions. Some particular cases are discussed.  相似文献   

2.
The stability of q-Gaussian distributions as particular solutions of the linear diffusion equation and its generalized nonlinear form, , the porous-medium equation, is investigated through both numerical and analytical approaches. An analysis of the kurtosis of the distributions strongly suggests that an initial q-Gaussian, characterized by an index qi, approaches asymptotically the final, analytic solution of the porous-medium equation, characterized by an index q, in such a way that the relaxation rule for the kurtosis evolves in time according to a q-exponential, with a relaxation index qrel ≡qrel(q). In some cases, particularly when one attempts to transform an infinite-variance distribution (qi ≥ 5/3) into a finite-variance one (q < 5/3), the relaxation towards the asymptotic solution may occur very slowly in time. This fact might shed some light on the slow relaxation, for some long-range-interacting many-body Hamiltonian systems, from long-standing quasi-stationary states to the ultimate thermal equilibrium state.  相似文献   

3.
4.
We consider a class of inhomogeneous media known as composite media that is often encountered in experimental sciences, and investigate the persistence probability of a random walker in such a system. Analytical and numerical results for the crossover time scales are obtained for a composite system with two homogeneous components and three homogeneous components respectively.  相似文献   

5.
Unbiased random walks are performed on topologically biased anisotropic percolation clusters (APC). Topologically biased APCs are generated using suitable anisotropic percolation models. New walk dimensions are found to characterize the anisotropic behaviour of the unbiased random walk on the biased topology. Critical properties of electro and magneto conductivities are characterized estimating respective dynamical critical exponents. A dynamical scaling theory relating dynamical and static critical exponents has been developed. The dynamical critical exponents satisfy the scaling relations within error bar.  相似文献   

6.
We present a canonically invariant form for the generalized Langevin and Fokker-Planck equations. We discuss the role of constants of motion and the construction of conservative stochastic processes. Received : 24 July 1997 / Revised : 30 October 1997 / Accepted : 26 January 1998  相似文献   

7.
Nonlinear Fokker-Planck equations (e.g., the diffusion equation for porous medium) are important candidates for describing anomalous diffusion in a variety of systems. In this paper we introduce such nonlinear Fokker-Planck equations with general state-dependent diffusion, thus significantly generalizing the case of constant diffusion which has been discussed previously. An approximate maximum entropy (MaxEnt) approach based on the Tsallis nonextensive entropy is developed for the study of these equations. The MaxEnt solutions are shown to preserve the functional relation between the time derivative of the entropy and the time dependent solution. In some particular important cases of diffusion with power-law multiplicative noise, our MaxEnt scheme provides exact time dependent solutions. We also prove that the stationary solutions of the nonlinear Fokker-Planck equation with diffusion of the (generalized) Stratonovich type exhibit the Tsallis MaxEnt form. Received 26 February 1999  相似文献   

8.
9.
Load-dependent random walks are used to investigate the evolution of load distribution in transportation network systems. The walkers hop to a node according to node load of the last time step. The preference of walks leads to a change in the load distribution. It changes from degree-dependent distribution in the case of non-preference walks to eigenvector-centrality-dependent distribution. By numerical simulations, it is shown that the network heterogeneity has a influence on the effect of walk preference. In the cascading failure phenomenon, an appropriate degree correlation can guarantee a low risk of cascading failures.  相似文献   

10.
A generalised random walk scheme for random walks in an arbitrary external potential field is investigated. From this concept which accounts for the symmetry breaking of homogeneity through the external field, a generalised master equation is constructed. For long-tailed transfer distance or waiting time distributions we show that this generalised master equation is the genesis of apparently different fractional Fokker-Planck equations discussed in literature. On this basis, we introduce a generalisation of the Kramers-Moyal expansion for broad jump length distributions that combines multiples of both ordinary and fractional spatial derivatives. However, it is shown that the nature of the drift term is not changed through the existence of anomalous transport statistics, and thus to first order, an external potential Φ(x) feeds back on the probability density function W through the classical term ∝/ x (x)W(x, t), i.e., even for Lévy flights, there exists a linear infinitesimal generator that accounts for the response to an external field. Received 30 June 2000 and Received in final form 12 November 2000  相似文献   

11.
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise generating process. We explicitly consider this equation for various specific types of noises, including Poisson white noise and Lévy stable noise, and show that it reproduces all Fokker-Planck equations that are known for these noises. Exact analytical, time-dependent and stationary solutions of the generalized Fokker-Planck equation are derived and analyzed in detail for the cases of a linear, a quadratic, and a tailored potential.  相似文献   

12.
We study a simple model for a neuron function in a collective brain system. The neural network is composed of an uncorrelated configuration model (UCM) for eliminating the degree correlation of dynamical processes. The interaction of neurons is assumed to be isotropic and idealized. These neuron dynamics are similar to biological evolution in extremal dynamics with locally isotropic interaction but has a different time scale. The functioning of neurons takes place as punctuated patterns based on avalanche dynamics. In our model, the avalanche dynamics of neurons exhibit self-organized criticality which shows power-law behavior of the avalanche sizes. For a given network, the avalanche dynamic behavior is not changed with different degree exponents of networks, γ≥2.4 and various refractory periods referred to the memory effect, Tr. Furthermore, the avalanche size distributions exhibit power-law behavior in a single scaling region in contrast to other networks. However, return time distributions displaying spatiotemporal complexity have three characteristic time scaling regimes Thus, we find that UCM may be inefficient for holding a memory.  相似文献   

13.
We study a general class of nonlinear mean field Fokker-Planck equations in relation with an effective generalized thermodynamical (E.G.T.) formalism. We show that these equations describe several physical systems such as: chemotaxis of bacterial populations, Bose-Einstein condensation in the canonical ensemble, porous media, generalized Cahn-Hilliard equations, Kuramoto model, BMF model, Burgers equation, Smoluchowski-Poisson system for self-gravitating Brownian particles, Debye-Hückel theory of electrolytes, two-dimensional turbulence... In particular, we show that nonlinear mean field Fokker-Planck equations can provide generalized Keller-Segel models for the chemotaxis of biological populations. As an example, we introduce a new model of chemotaxis incorporating both effects of anomalous diffusion and exclusion principle (volume filling). Therefore, the notion of generalized thermodynamics can have applications for concrete physical systems. We also consider nonlinear mean field Fokker-Planck equations in phase space and show the passage from the generalized Kramers equation to the generalized Smoluchowski equation in a strong friction limit. Our formalism is simple and illustrated by several explicit examples corresponding to Boltzmann, Tsallis, Fermi-Dirac and Bose-Einstein entropies among others.  相似文献   

14.
Centrality measure of complex networks using biased random walks   总被引:2,自引:0,他引:2  
We propose a novel centrality measure based on the dynamical properties of a biased random walk to provide a general framework for the centrality of vertex and edge in scale-free networks (SFNs). The suggested centrality unifies various centralities such as betweenness centrality (BC), load centrality (LC) and random walk centrality (RWC) when the degree, k, is relatively large. The relation between our centrality and other centralities in SFNs is clearly shown by both analytic and numerical methods. Regarding to the edge centrality, there have been few established studies in complex networks. Thus, we also provide a systematic analysis for the edge BC (LC) in SFNs and show that the distribution of edge BC satisfies a power-law. Furthermore we also show that the suggested centrality measures on real networks work very well as on the SFNs.  相似文献   

15.
Soft-constraint affinity propagation (SCAP) is a new statistical-physics based clustering technique [M. Leone, Sumedha, M. Weigt, Bioinformatics 23, 2708 (2007)]. First we give the derivation of a simplified version of the algorithm and discuss possibilities of time- and memory-efficient implementations. Later we give a detailed analysis of the performance of SCAP on artificial data, showing that the algorithm efficiently unveils clustered and hierarchical data structures. We generalize the algorithm to the problem of semi-supervised clustering, where data are already partially labeled, and clustering assigns labels to previously unlabeled points. SCAP uses both the geometrical organization of the data and the available labels assigned to few points in a computationally efficient way, as is shown on artificial and biological benchmark data.  相似文献   

16.
We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. Our formula generalizes the usual Einstein relation for a free Brownian motion to the context of two-dimensional gravity. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc, the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature Tc is different from the collapse temperature T* at which the partition function diverges. These quantities differ by a factor 1-1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms” in a two-dimensional (2D) plasma and the formation of dipoles or “supervortices” in 2D point vortex dynamics.  相似文献   

17.
The dynamics of the collective spin for Bose-Einstein condensates with nonlinear interactions, is studied within the framework of the two-component spinor. We discuss the spin resonance when the system is submitted to a periodically-modulated magnetic field at the zero temperature. In this case, the nonlinearity parameter controls the critical change between a localized and a homogeneous spin state. When the temperature is finite – or a random magnetic field is considered – the movement of the collective spin is governed by the Landau-Lifshitz-Gilbert equation, from which the complete Fokker-Planck equation is derived. This equation is the essential tool to describe the time-evolution of the probability distribution function for the collective spin. The functional integral approach is used to solve analytically examples of BEC spin behavior in a static magnetic field at finite temperature. We show how such a method can lead effectively to the complete solution of the Fokker-Planck equation for this kind of problems.  相似文献   

18.
It is well known that long-range interactions pose serious problems for the formulation of statistical mechanics. We show in this paper that ensemble equivalence is violated in a simple mean-field model of N fully coupled classical rotators with repulsive interaction (antiferromagnetic XY model). While in the canonical ensemble the rotators are randomly dispersed over all angles, in the microcanonical ensemble a bi-cluster of rotators separated by angle , forms in the low energy limit. We attribute this behavior to the extreme degeneracy of the ground state. We obtain empirically an analytical formula for the probability density function for the angle made by the rotator, which compares extremely well with numerical data and should become exact in the zero energy limit. At low energy, in the presence of the bi-cluster, an extensive amount of energy is located in the single harmonic mode, with the result that the energy temperature relation is modified. Although still linear, , it has the slope , instead of the canonical value . Received 1 February 2000  相似文献   

19.
The asymptotic behavior of a nonlinear diffusive equation obtained in the framework of the κ-generalized statistical mechanics is studied. The analysis based on the classical Lie symmetry shows that the κ-Gaussian function is not a scale invariant solution of the generalized diffusive equation. Notwithstanding, several numerical simulations, with different initial conditions, show that the solutions asymptotically approach to the κ-Gaussian function. Simple argument based on a time-dependent transformation performed on the related κ-generalized Fokker-Planck equation, supports this conclusion.  相似文献   

20.
A generalized thermostatistics is developed for an entropy measure introduced by Sharma and Mittal. A maximum-entropy scheme involving the maximization of the Sharma and Mittal entropy under appropriate constraints expressed as escort mean values is advanced. Maximum-entropy distributions exhibiting a power law behavior in the asymptotic limit are obtained. Thus, results previously derived for the Renyi entropy and the Tsallis entropy are generalized. In addition, it is shown that for almost deterministic systems among all possible composable entropies with kernels that are described by power laws the Sharma-Mittal entropy is the only entropy measure that gives rise to a thermostatistics based on escort mean values and admitting of a partition function. Received 27 June 2002 Published online 31 December 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号