首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jia-Rong Chen 《Tetrahedron》2010,66(29):5367-5372
Asymmetric Michael addition reactions of aldehydes to nitroolefins have been successfully initiated by a series of primary amine thiourea bifunctional catalysts, with high enantioselectivities (90-98% ee) and excellent yields (80-96%). The privileged quinine scaffold was found to be essential to the reaction efficiency and enantioselectivity.  相似文献   

2.
This article investigates the role of solvation effects in the autocatalysis reaction of the epoxy–amine cure reaction. A single‐phase three component model was developed encompassing a two‐component reaction mix and a single polymeric product. The reaction was modelled as an SN2 reaction. Association of the nucleophile with each component in the reaction was defined via a binding constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3579–3586, 2004  相似文献   

3.
A novel silica‐based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol–yne click chemistry with 3‐aminopropyl‐functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2‐N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed‐mode separation mechanism on SiO2‐N(C18)4. Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2O (5%, v/v). SiO2‐N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2‐N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica‐based stationary phase will exhibit great potential in the analysis of basic compounds.  相似文献   

4.
Thiourethane‐based thiol‐ene (TUTE) films were prepared from diisocyanates, tetrafunctional thiols and trienes. The incorporation of thiourethane linkages into the thiol‐ene networks results in TUTE films with high glass transition temperatures. Increases of Tg were achieved by aging at room temperature and annealing the UV cured films at 85 °C. The aged/annealed film with thiol prepared from isophorone diisocyanate and cured with a 10,080‐mJ/cm2 radiant exposure had the highest DMA‐based glass transition temperature (108 °C) and a tan δ peak with a full width at half maximum (FWHM) of 22 °C, indicating a very uniform matrix structure. All of the initially prepared TUTE films exhibited good physical and mechanical properties based on pencil hardness, pendulum hardness, impact, and bending tests. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5103–5111, 2007  相似文献   

5.
6.
7.
The dielectric and magnetic properties of carbonyl—iron (CI) and nickel zinc ferrite polymer composites were studied with respect to the ferrite particulate content and microwave frequency. From the experimental data and using empirical models that relate the composite dielectric and magnetic properties, the respective dielectric and magnetic properties of the neat fillers were estimated. The tensile properties of the particulate composites comprising CI were shown to follow qualitatively Mooney's equation for the elastic modulus. The tensile strength of an elastomeric polyurethane and PVC composites containing CI increased with particulate content, while the elongation to break decreased with filler content. SEM micrographs of tensile fracture surfaces indicated that somewhat better adhesion is obtained in the case of the polyurethane-based composites compared to the PVC ones.  相似文献   

8.
Inorganic–organic nanocomposites were created using tetraethylorthosilicate (TEOS), titanium isopropoxide (TIP), and poly(t‐butylstyrene‐b‐hydrogenated isoprene‐b‐sulfonated styrene‐b‐hydrogenated isoprene‐b‐t‐butylstyrene) or pentablock copolymer (PBC). A TEOS–TIP–H2O ternary phase diagram was generated to create homogenous sol solutions with designable condensation reactions that led to controllable materials. An inorganic TEOS–TIP network was synthesized using sol–gel chemistry within the organic PBC domain. All TEOS–TIP–PBC films exhibited higher water sorption than unmodified PBC ionomer that was attributed to a change in morphology. Proton conductivity increased up to 80% due to TEOS–TIP within the nanocomposite film. This can be attributed to ion domain redistribution and partial charge transfer from the titanate's inorganic domains to sulfonate groups that promote acid dissociation. PBC had a microphase‐separated morphology that changed with increasing TIP concentration, which was observed from atomic force microscopy and small‐angle X‐ray scattering results. Finally, thermal gravimetric analysis revealed a decrease in degradation temperature, and dynamic mechanical analysis results demonstrated reduced polymer chain mobility caused by inorganic–organic interactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 575–586  相似文献   

9.
The chemical modification of proteins is a valuable technique in understanding the functions, interactions, and dynamics of proteins. Reactivity and selectivity are key issues in current chemical modification of proteins. The Michael addition‐like thiol–ene reaction is a useful tool that can be used to tag proteins with high selectivity for the solvent‐exposed thiol groups of proteins. To obtain insight into the bioconjugation of proteins with this method, a kinetic analysis was performed. New vinyl‐substituted pyridine derivatives were designed and synthesized. The reactivity of these vinyl tags with L ‐cysteine was evaluated by UV absorption and high‐resolution NMR spectroscopy. The results show that protonation of pyridine plays a key role in the overall reaction rates. The kinetic parameters were assessed in protein modification. The different reactivities of these vinyl tags with solvent‐exposed cysteine is valuable information in the selective labeling of proteins with multiple functional groups.  相似文献   

10.
The relationships among cure temperature, chemical kinetics, microstructure, and mechanical performance have been investigated for vinyl–ester resins. Fourier transform infrared spectroscopy was used to follow the reactions of vinyl–ester and styrene during isothermal curing of Dow Derakane 411‐C‐50 at 30 and 90°C. Reactivity ratios of vinyl–ester and styrene vinyl groups were evaluated using the copolymer composition equation. The results indicate that the ratio of vinyl–ester to styrene double bonds incorporated into the network is greater for 30 than for 90°C cure. Mechanical properties were obtained for systems subjected to isothermal cures at 30 and 90°C and postcured above ultimate Tg. The results show that the initial cure temperature significantly affects the mechanical behavior of vinyl–ester resin systems. In particular, values of strength and fracture toughness for postcured samples initially cured isothermally at 30°C are significantly higher than those obtained for samples cured isothermally at 90°C. Examination of fracture surfaces using atomic force microscopy revealed the existence of a nodular microstructure possessing characteristic nodule dimensions that are affected by the temperature of cure. Such features suggest the existence of phase separation during cure. A binary interaction model in conjunction with chemical kinetic data and estimated solubility parameters was used to evaluate enthalpic interactions between the growing polymer network and monomers of the vinyl–ester system. The results indicate that the interaction energy becomes increasingly endothermic as cure progresses and that this energy is affected by the temperature of cure through differences in copolymerization behavior. Hence, in addition to entropic factors, the changes in enthalpic contribution to the Gibbs free energy suggest that the probability of phase separation increases with extent of cure and that its onset is potentially affected by cure temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 725–744, 1999  相似文献   

11.
The reaction mechanism of chitosan, bovine serum albumin (BSA), and gelatin with genipin (a natural crosslinking reagent) was examined with infrared, ultraviolet–visible, and 13C NMR spectroscopies; protein‐transfer reaction mass spectrometry; photon correlation spectroscopy; and dynamic oscillatory rheometry. Two reactions that proceeded at different rates led to the formation of crosslinks between primary amine groups. The fastest reaction to occur was a nucleophilic attack on genipin by a primary amine group that led to the formation of a heterocyclic compound of genipin linked to the glucosamine residue in chitosan and the basic residues in BSA and gelatin. The second, slower, reaction was the nucleophilic substitution of the ester group possessed by genipin to form a secondary amide link with chitosan, BSA, or gelatin. A decreased crosslinking rate in the presence of deuterium oxide rather than water suggested that acid catalysis was necessary for one or both of the reactions to proceed. The behavior of the gel time with polymer concentration was consistent with second‐order gelation kinetics resulting from an irreversible crosslinking process, but was complicated by the oxygen radical‐induced polymerization of genipin that caused the gels to assume a blue color in the presence of air. The lower elastic modulus attained after a given time during crosslinking of the globular protein BSA as compared to the coiled protein gelatin, despite possessing more crosslinkable basic residues, demonstrated the importance of protein secondary and tertiary structures in determining the availability of sites for crosslinking with genipin in protein systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3941–3953, 2003  相似文献   

12.
A general scheme for the endo‐ and exo‐cyclization of furan reactivity with [L ‐AuIII, IClx] with (x = 3, 1 and L ‐acetylene and vinylidene) complexes is investigated using density functional theory (DFT) code. Two conceivable mechanisms via a [4 + 2] Diels–Alder process or carbene complex are analyzed. According to the activation energy values of the gold (III and I) catalyst, the first mechanism, which implies the Diels–Alder reaction of AuIII, is thermodynamically favored and gives more evidence of the intramolecular addition of the furan with the alkynes. The second mechanism, presumably assisted by the spontaneous formation of the exo‐vinylidene complexes and intermediates of gold (III, I) by forming the carbene complex, is kinetically favored. Additionally, we compare our results with other structures with intramolecular additions that exhibit the quasi‐similarity of gold analogue structures. Differences in activation energies are observed, according to the functional used. Finally, we probe the solvent effects, which decrease the energy barrier in the path. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
The dilatometric curves of 21 epoxide–amine network samples made from five distinct epoxide–amine pairs, with variable amine/epoxide functional ratio values for three of these pairs, were recorded in the 200 K to Tg (glass‐transition temperature) − 50 K temperature range. The curves display a quasiparabolic shape consistent with an expansion law derived from a thermodynamic study [Bongkee, C. Polym Eng Sci 1985, 25(18), 135]: where V and V0 are the volumes at T and 0 K, respectively, and A is a coefficient that varied for the studied samples between 2.5 × 10−7 and 5.0 × 10−7 K−2. A tentative study of the structure–property relationships in this field revealed that A does not depend significantly on the crosslink density, the cohesive energy density, the Tg, or the local mobility. In contrast, A seems to be sharply related to the chain flexibility, which essentially depends on the aromatic content in the studied structural series. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 537–543, 2000  相似文献   

14.
The effect of the chemical structure on the reactivity of alkenes used in thiol–ene photopolymerizations has been investigated with real‐time infrared spectroscopy. Model studies of thiol–ene photoreactions with various monofunctional hydrocarbon alkenes and the monofunctional thiol ethyl‐3‐mercaptopropionate have been performed to identify and understand structure–reactivity relationships. The results demonstrate that terminal enes react very rapidly with thiol, achieve complete conversion, and are independent of the aliphatic hydrocarbon substituent length. Disubstitution on a single carbon of a terminal ene significantly reduces the reactivity, whereas substitution on the carbon α to the terminal ene has a minimal influence on the reactivity. Internal trans enes display reduced reactivity and a lower overall conversion and deviate from the standard thiol–ene reaction mechanism because of steric strain induced by 1,3‐interactions. The reactivity and conversion of internal trans enes decrease as the substituents on the ene become larger, reaching a minimum when the substituent size is greater than or equal to that of propyl groups. Internal cis enes react rapidly with thiol; however, they undergo a fast isomerization–elimination reaction sequence generating the trans ene, which proceeds to react at a reduced rate with thiol. The reactivity of cyclic enes is dictated by ring strain, stereoelectronic effects, and hydrogen abstractability. The reactivity trends in the model studies have been used to explain the photopolymerization mechanism and kinetics of a series of multifunctional thiol–ene systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6283–6298, 2004  相似文献   

15.
The electric dipole moment and the static dipole polarizability of the hydrogen iodide molecule were studied using sophisticated correlated and relativistic methods. Both scalar and spin–orbit relativistic effects were carefully accounted for. We conclude that the large differences between the theoretical and experimental dipole moment, the dipole moment derivative and the polarizability cannot be reconciled by improved account of electron correlation and relativistic effects. The most striking difference between theory and experiment is observed for the polarizability anisotropy. We believe that experimental data, namely the experimental dipole moment (the most recent value is 0.176 au as compared to our best theoretical estimate, 0.154±0.003 au), the parallel polarizability (44.4 and 38.47±0.05 au) and the anisotropy (11.4 and 2.33±0.05 au) must be inaccurate. Experimental and theoretical perpendicular polarizability components (33.0 and 36.14±0.05 au,) and the mean polarizability (36.8 and 36.92±0.05 au) agree better. Our vibrationally corrected relativistic CCSD(T) results represent the most sophisticated predictions of electric properties of HI obtained so far.Contribution to the Björn Roos Honorary Issue  相似文献   

16.
以苯丙氨基酸锂为催化剂,成功催化了醛、胺和三甲基硅腈三组分的Strecker反应,并结合一系列氨基酸盐催化剂的筛选以及各种溶剂的选择优化了反应条件.结果表明,利用所述反应可以得到较高收率的α-氨基腈;该三组份的Strecker反应具有反应条件温和、反应收率较高、操作简便、无需繁琐的分离步骤、催化剂便宜且环境友好等优点.  相似文献   

17.
Mixtures of polystyrene derivatives (PSCS) and poly(vinyl methyl ether) (PVME) were made photocrosslinkable by chemically labeling PSCS chains with photoreactive anthracene. Miscibility of these anthracene-labeled PSCS/PVME blends was examined by light scattering under several crosslinking conditions in the one-phase region via photodimerization of anthracenes. As the reaction proceeds, the coexistence curve of PSCS/PVME blends shifts toward the low temperature side. By following the changes in concentration of anthracenes with irradiation time, it was found that the crosslinking reaction of PSCS chains in the blends does not follow the mean-field kinetics. However, it can be well expressed by the Kohlrausch–Williams–Watts (KWW) relaxation mechanism, indicating that the crosslinking reaction proceeds inhomogeneously in the blends. By scaling the reaction time with the average reaction rate obtained from the KWW equation modified for the reaction kinetics, all the crosslinking data obtained in the miscible region of the reacted blends fall on a single master curve. These experimental results suggest the universal behavior of the photocrosslinking kinetics obtained under the “shallow quench” conditions in the region far away from the coexistence curve of the reacting blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 455–462, 1998  相似文献   

18.
Calorimetry and dielectric relaxation spectroscopy during the growth of a polymer network in the stoichiometric mixture of a triepoxide with 4-chloroaniline have been performed in separate experiments to investigate the increase in the relaxation time with the number of covalent bonds. A comparison with the corresponding study of triepoxide–aniline and triepoxide–3-chloroaniline mixtures shows that steric hindrance of the amine group by chlorine slows the molecular dynamics and the relaxation time of the state containing a fixed number of bonds. The polymerization kinetics measured during ramp heating does not yield a reliable activation energy. A recent empirical relation between the relaxation time and the extent of polymerization, and the condition for the onset of diffusion-control kinetics have been examined using the data for these three polymerizing mixtures. The results show substantial deviations from the empirical relation and appear to conflict with our basic understanding of the polymerization process. It is shown mathematically that features attributed to the onset of diffusion-controlled kinetics can arise from thermochemical behavior alone, without reference to the molecular dynamics. An earlier theory for the change in the kinetics of an addition reaction from mass control to diffusion control has been considered, and is seen as relevant to the polymerization reactions. It is argued that the dielectric relaxation rate does not directly indicate the chemical reaction rate because the reorientational motion of the dipolar entities may not be coupled to the rotational and translational diffusion that brings the sterically hindered chemically reacting sites together. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2703–2716, 1998  相似文献   

19.
Photocurable, ternary‐component mixtures of a 1:1 molar multifunctional thiol–ene (trithiol and triallyl ether) blend and a 16‐functional acrylate based monomer have been photopolymerized, and the final film properties of the ternary crosslinked networks have been measured. The photopolymerization kinetics, morphology, and mechanical and physical properties of the films have been investigated with real‐time infrared, atomic force microscopy, and dynamic mechanical analysis. The photopolymerization process is a combination of acrylate homopolymerization and copolymerizations of thiol with allyl ether and acrylate functionalities. The tan δ peaks of the photopolymerized ternary systems are relatively narrow and tunable over a large temperature range. The morphology is characterized by a distinct phase‐separated nanostructure. The photocured thiol–ene/acrylate ternary systems can be made to exhibit good mechanical properties with enhanced energy absorption at room temperature by the appropriate selection of each component concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 822–829, 2007.  相似文献   

20.
New and useful aspects of chemical reactivity as described by reactivity indexes and used in connection with the maximum hardness and minimum polarizability principles (MHP and MPP, respectively) are discussed and illustrated for two classical reactions in organic chemistry. They include the Beckmann rearrangement and the condensation reactions of -amino acids. The MPP appears as a more general rule than the MHP. Another relevant result is related to the usefulness of both empirical reactivity rules to predict the most probable reaction mechanism among two different pathways displaying very close values in activation energy (competitive pathways). This is illustrated for the condensation reaction of a series of -amino acids: while the accepted stepwise route follows both the MHP and MPP rules, the alternative concerted channel does not, yet its associated activation energy is slightly lower than that corresponding to the nonconcerted reaction mechanism.From the Proceedings of the 28th Congresco de Quimicos Teóricos de Expresión Latina (QUITEL 2002)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号