首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
分别以高分子三嵌段共聚物P123(PEO20-PPO70-PEO20)和F127(PEO106-PPO70-PEO106)为模板剂, 通过高温水热法制备了具有超低介电常数的规则介孔氧化硅材料(OMSs). 当合成温度达到200℃时, 得到的产物仍可保持规则的介孔结构. X射线衍射和氮气吸附结果表明, OMSs系列材料具有规则的二维六方或体心立方介孔结构、 大的比表面积和孔容及均一的孔径分布. 29Si MAS NMR分析表明, OMSs与低温(100℃)合成产物相比具有更高的骨架缩合度, 从而具有优异的水热稳定性. 由于具有大的孔容和高的骨架缩合度, OMSs表现出了超低的介电常数. 以P123为模板剂, 200℃下合成的OMS的介电常数可达1.31. OMSs作为一类稳定的超低介电常数材料, 对于绝缘材料的发展具有潜在的应用价值.  相似文献   

2.
We have explored the relationships between the reaction force F(ξ), the reaction force constant κ(ξ) and the projected force constants of the intramolecular proton transfer HO−NS → ON−SH along the intrinsic reaction coordinate ξ. The structural changes and energetics associated with the reaction are analyzed in terms of the three regions defined by F(ξ): reactant, transition and product. The significance of the similarity between κ(ξ) and the variation of the force constant associated to the reaction coordinate mode, kξ(ξ), is discussed in detail.  相似文献   

3.
The synthesis of mesoporous silicon carbide by chemical vapor infiltration of dimethyl dichlorosilane into mesoporous silica SBA-15 and subsequent dissolution of the silica matrix with HF was investigated. The influence of the synthesis parameters of the composite material (SiC/SBA-15) on the final product (mesoporous SiC) was determined. Depending on the preparation conditions, materials with specific surface areas from 410 to 830 m2 g−1 and pore sizes between 2 and 10 nm with high mesopore volume (0.31-0.96 cm3 g−1) were prepared. Additionally, the thermal stability of mesoporous silicon carbide at 1573 K in an inert atmosphere (argon) was investigated, and compared to that of SBA-15 and ordered mesoporous carbon (CMK-1). Mesoporous SiC has a much higher thermal textural stability as compared to SBA-15, but a lower stability than ordered mesoporous carbon CMK-1.  相似文献   

4.
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements.  相似文献   

5.
SBA-15负载CeO2纳米晶的溶胶-凝胶一步合成   总被引:2,自引:0,他引:2  
以P123为模板剂, 正硅酸乙酯和硝酸铈为前驱体, 通过溶胶-凝胶路线在酸性条件下合成了SBA-15负载氧化铈(CeO2与SiO2质量比为28.7%)有序介孔材料. 采用热重/差热分析(TGA/DTA)、X射线衍射(XRD)、透射电镜(TEM)和氮气吸附等手段对所合成材料进行了表征. 结果表明, 合成的材料具有类似于SBA-15的结构, 孔径、孔容和比表面积分别为38.7 Å, 0.46 cm3/g和570 m2/g. X射线衍射(XRD)、透射电镜(TEM)、X射线能谱(EDS)和选区电子衍射花样联合表征证实了铈物种以高分散的CeO2纳米晶的形式分布在介孔基体中.  相似文献   

6.
氨基功能化SBA-16对CO_2的动态吸附特性   总被引:2,自引:0,他引:2  
史晶金  刘亚敏  陈杰  张瑜  施耀 《物理化学学报》2010,26(11):3023-3029
采用浸渍法将四乙烯五胺(TEPA)负载到介孔分子筛SBA-16的孔道内,形成功能化的介孔材料用于CO2的吸附.利用X射线衍射(XRD)、透射电镜(TEM)、氮气物理吸附-脱附和热重分析(TGA)等方法对样品进行了表征.通过动态吸附对不同TEPA浸渍量的SBA-16的CO2吸附性能和再生性能进行研究.结果表明:修饰后的SBA-16仍然保持有序的孔道结构,但样品的孔道有序度降低,比表面积、孔容、平均孔径都减小.样品对CO2的饱和吸附容量和穿透吸附容量随着TEPA浸渍量的增加而增加.60℃时,30%TEPA浸渍量的样品的穿透吸附容量和饱和吸附容量达到最大,分别为0.625和0.973mmol·g-1.在60-80℃,样品的动态吸附性能稳定.经过20次吸附-脱附循环后,样品的饱和吸附容量仅降低了6.45%.采用失活模型对CO2的吸附穿透曲线进行模拟,该模型能够很好地模拟样品对CO2的吸附过程.  相似文献   

7.
Different microporous ceramic membranes have been investigated to be used as separators in electrochemical reactors. The effect of porosity on the effective electrical conductivity of the ceramic membranes has been studied. The porosity of the membranes has been modified by changing the manufacturing pressure and by the addition of starch to the alumina–kaolin matrix. In the absence of starch the pore size distribution becomes more uniform with the increase of the manufacturing pressure, and lower porosities and average pore sizes are obtained. On the other hand, the porosity and the average pore size increase with the addition of starch to the alumina–kaolin matrix, but pore size distribution is less uniform and becomes bimodal with two different characteristic pore diameters.

The effective electrical conductivity of the membranes, κeff, increases with the decrease of manufacturing pressure and with the increase of starch content. The following correlation between the effective electrical conductivity and the porosity has been obtained: fc = κeff/κ = 0.35 1.04, where κ is the electrolyte electrical conductivity.  相似文献   


8.
Highly ordered SBA-16-type mesoporous silica materials were synthesized by using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer (EO(132)-PO(50)-EO(132), Pluronic F108) as template through a two-step pathway under mildly acidic conditions (pH 2.15-4.50). The highly ordered cage-like mesoporosity of the prepared SBA-16-type mesoporous silica materials having Im3m cubic mesostructure was proved by the well-defined X-ray diffraction patterns combined with transmission electron microscopy. Scanning electron microscopy shows a variation from the spherical agglomerations to the randomly shaped ones with an increase of pH value. The nitrogen adsorption-desorption analysis reveals that the prepared SBA-16-type mesoporous silica materials have a uniform small-sized pore diameter (3.37-4.24 nm) and very thick pore wall (8.84-10.2 nm). These features may make the SBA-16-type mesoporous silica materials synthesized in this study favor the incorporation of catalytically active heteroatoms in silica frameworks, and the functionalization of organic groups for applications in catalysis, sensor and separation. The two-step synthetic method under the mildly acidic conditions can also be extended to the production in the industrial scale as an environmentally friendly way.  相似文献   

9.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

10.
In this work, a polymeric composite was prepared from ethylene propylene diene monomer (EPDM) and silicone rubber (S) with additives of modified fumed silica (MFS), titanium dioxide (TiO2) and graphene. The dielectric and thermal performances of the EPDM-based composites were studied. An increase in the dielectric constant and AC dielectric breakdown strength was observed for the EPDM rubber composites containing MFS, TiO2, and graphene additives. In addition, the incorporation of the additives resulted7in a significant increase in the thermal stability (~30–50 °C) and thermal conductivity (~7–35%) of the composites. The combination of these various improvements gives suitable performance advantage to the polymeric composite for use in insulating applications.  相似文献   

11.
An experimental investigation has been carried out on the generation of bubbles due to the injection of a constant flow rate of air through an orifice submerged in water. Orifices of different radii drilled in horizontal plates of different materials, both hydrophilic and hydrophobic, have been used to cover a range of static contact angles (68° ≤ θ0 ≤ 123°), and a wide range of volumetric gas flow rates (0.5 mm3/s ≤ Q ≤ 1.33 × 104 mm3/s) has been investigated. It is shown that data for different static contact angles and orifice radii can be approximately reduced to a single bubble volume/flow rate relationship when a properly scaled bubble volume at detachment is plotted versus a properly scaled volumetric gas flow rate. This data reduction permits an easy estimation of the bubble volume for any constant volumetric gas flow rate.  相似文献   

12.
A facile one-step method was proposed for the successful synthesis of Ag-nanoparticle-loaded mesoporous silica SBA-15 composites, where silver ions and their corresponding reductant aniline were added in the traditional synthetic system of mesoporous silica SBA-15 containing P123 as the surfactant and TEOS as the silica source. Mesoporous silica SBA-15 and Ag nanoparticles were spontaneously formed with Ag nanoparticles embedded in channels and even implanted in frameworks of mesoporous silica SBA-15. A tentative formation process was then proposed according to experimental observations. Furthermore, catalytic activities of Ag-nanoparticle-loaded silica SBA-15 composites toward the reduction of 4-nitrophenol in the presence of NaBH(4) and the reduction of H(2)O(2) were also investigated.  相似文献   

13.
Metal incorporation into nanoporous materials could give Lewis acid sites through the framework substitution of silica matrix, which are supposed to be in tetrahedral substitution of silica. In this work, Zr- and Sn-incorporated SBA-16 were directly synthesized by the microwave synthesis method. These microwave synthesized Zr- and Sn-incorporated mesoporous silica materials were applied in activation of ketones by Lewis acid sites to catalyze Meerwein-Ponndorf-Verly reduction of cyclohexanone and Baeyer-Villiger oxidation of adamantanone, respectively. Optimum incorporated Zr- and Sn-species gave almost 100% selectivity with high activity onto corresponding alcohol and lactone, respectively.  相似文献   

14.
采用一锅合成法通过调变自组装过程中硫酸和盐酸的体积比,成功制备了系列介孔SO42-/ZrO2-SiO2固体酸材料(Zr/Si物质的量为1.1).XRD、UV-Vis DRS、HR-TEM等表征结果表明,所得材料均具有高度有序的二维介孔结构及四方相氧化锆的晶体结构.氮吸附和FT-IR表征结果进一步发现,通过改变硫酸/盐酸体积比可有效调变材料比表面积、孔容、孔径及表面L酸与B酸的相对强度.与纯硅介孔分子筛SBA-15不同,此系列SO42-/ZrO2-SiO2固体酸材料均在正戊烷的异构化反应中表现出较高的催化活性和稳定性.其原因在于,在合成过程中硫酸的加入不仅促使了酸基的形成,而且稳定了催化剂的晶体结构;盐酸的存在则保持了有序的介孔结构.由此可见,混酸合成体系有望制备出结构有序、酸性可调、催化性能优越的新型催化材料,并在众多酸催化反应中取得应用.  相似文献   

15.
Rare earth metal sandwiched Keggin-type heteropolyoxometalates, K11[RE(PW11O39)2] (RE–PW11, RE = La, Ce, Pr, Nd, Sm, Eu, Dy and Y), were anchored onto aminosilylated mesoporous silica SBA-15 and the resulting RE–PW11/APTS/SBA-15 materials were characterized by ICP, FT-IR, XRD, N2 adsorption, 31P MAS NMR and TEM. The RE–PW11 clusters preserve their structure in the surface-modified mesopores. The catalytic activity of RE–PW11 clusters was tested on heterogeneous oxidation of cyclohexene by H2O2. The interaction between RE–PW11 and amino groups grafted on the channel surface of SBA-15 leads to strong immobilization of RE–PW11 due to the introduction of the rare earth metal centre, which is against the leaching during the reaction.  相似文献   

16.
A new catalytic-oxidation method was adopted to remove the templates from SBA-1 5 and MCM-4 1 me- soporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template's property and textural property. The samples were cha- racterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectro- scopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.  相似文献   

17.
Acidic heterogeneous catalysts based on the anchorage of sulfonic groups on SBA-15 mesoporous silica were synthesized. In a first synthesis step, samples containing mercapto groups were prepared by co-condensation of tetraethylorthosilicate with 3-mercaptopropyltrimethoxysilane, in presence of ethylene-propylene block copolymer as mesoporous silica structure director. In other samples, mercapto groups were introduced by post-functionalization of the traditional calcined SBA-15. In a second step, these mercapto groups were oxidized in order to get sulfonic acid groups on the surface. Characterization of the samples was carried out by N2 adsorption-desorption, FTIR, XPS and acid-base titration. Spectroscopic techniques showed that the effective incorporation of sulfonic groups depends on the synthesis methodology used. In turn, the SBA-15 post-synthesis functionalization produces changes in structural characteristics like a decrease in BET surface and changes in the pore size distribution. The as-prepared materials were tested as acid catalysts in the alkylation of isobutane with 1-butene, and in the esterification of free fatty acids with methanol. The results obtained show a lack of activity in the alkylation reaction which can be associated with the formation and stabilization of the intermediate carbocation species.  相似文献   

18.
Magnetic Fe(3)O(4)@mesoporous silica (MS) composites were synthesized by generating Fe(3)O(4) nanoparticles in the mesoporous silica matrix using the sol-gel method in nitrogen atmosphere. The mesoporous silica hosts include SBA-15 particles owning highly ordered p6mm mesostructure, siliceous mesostructured cellular foams (MCFs), and fiber-like mesoporous silica (FMS) with unique pore structures. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and N(2) adsorption/desorption results show that Fe(3)O(4) functionalized MCFs and FMS possess suitable mesoporous structure for the adsorption of both small-molecular drug and large biomolecules. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of these systems. These Fe(3)O(4)@mesoporous silica composites show sustained release properties for aspirin in vitro. The release of the aspirin molecules from the pores of the Fe(3)O(4)@mesoporous silica composites is basically a diffusive process. Fe(3)O(4)@MCFs and Fe(3)O(4)@FMS owning larger pore size are good candidates for the adsorption of bovine serum albumin (BSA). These magnetic composites can be potential vectors for drug delivery and bioadsorption.  相似文献   

19.
New mesoporous materials were produced incorporating, at the beginning of the SBA-15 sol–gel synthesis, three different metalloporphyrins: m-5,10,15,20-TPP-Ni2+, Etio-III-Ni2+, Etio-III-VO2+. These materials have the well-known hexagonal structure characteristic of SBA-15 with some differences: the presence of the porphyrins modifies the micelles generated during the sol–gel process changing the textural properties of the SBA-15-Porphyrins. Even when the hexagonal structure was preserved, the order in the crystalline structure was maintained only for short distances producing pores of different sizes and wider pore size distributions. UV–Vis results showed that the porphyrins are strongly adsorbed on SBA-15 through the interaction of their π electrons with the superficial hydroxyl groups of the support. This was confirmed by thermogravimetric results that show a high degree of incorporation of the porphyrins on the SBA-15 and a high thermal stability.  相似文献   

20.
The CLST/PTFE/5%GF composite sharply decreases the CTE in both X&Y and Z directions, obtained a promising microwave dielectric material for microwave communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号