首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A universal and straightforward method for the preparation of polymer brushes via the formation of Si-C bond on silicon substrates through the UV-induced photopolymerization is demonstrated.  相似文献   

2.
Porous silicon has received considerable interest in recent years in a range of biomedical applications, with its performance determined by surface chemistry. In this work, we investigate the PEGylation of porous silicon wafers using click chemistry. The porous silicon wafer surface chemistry was monitored at each stage of the reaction via photoacoustic Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, whereas sessile drop contact angle and model protein adsorption measurements were used to characterize the final PEGylated surface. This work highlights the simplicity of click-chemistry-based functionalization in tailoring the porous silicon surface chemistry and controlling protein-porous silicon interactions.  相似文献   

3.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

4.
Two surface chemistry approaches were realized to complete click reactions at covalently grafted polymer brushes of poly(poly(ethylene glycol) monomethacrylate) on a planar silicon surface (Si-g-P(PEGMAOH)). On one hand, the hydroxyls from Si-g-P(PEGMA-OH) brushes can be replaced by chlorines of thionyl chloride and then chlorines can be substituted with azides of sodium azide to achieve azide-terminated (Si-g-P(PEGMA-N(3))) brushes. On the other hand, the terminal acetylene (Si-g-P(PEGMA-CH(2)C[triple bond]CH)) brushes can be prepared easily by reaction between Si-g-P(PEGMA-OH) and propargyl bromide. Model compounds of acetylene-terminated propargylamine, propiolic acid, and 10-undecynoic acid as well as azide-terminal benzyl azide were chosen to investigate the surface click reactions catalyzed with Cu(II)/sodium L-ascorbate by microwave irradiation under very mild conditions at 30°C for 1h. The stepwise modifications were characterized by two surface-sensitive techniques, Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) and X-ray Photoelectron Spectroscopy (XPS), and their spectra were analyzed in detail. The triazole ring v(H-C=) stretching at 3139 cm(-1) and the XPS high-resolution scan of N 1s directly confirm the click reactions. By quantifying their infrared spectra before and after click reactions, we conclude that the click reactions on silicon surfaces by microwave irradiation possess high yield and efficiency. Hence, the microwave irradiated click reaction approaches might open convenient avenues to fabricate functional and hybrid organic/silicon devices.  相似文献   

5.
We have developed a three-step method to graft molecularly imprinted polymer (MIP) thin films onto Au electrodes. In the first step, propargyl acrylate is clicked onto an azidoundecanethiol (N(3)(CH(2))(11)SH)/decanethiol mixed self-assembled monolayer (SAM). Then, by applying UV light (365 nm) in the presence of N,N'-methylenebis(acrylamide) (MAAM) and azobisisobutyronitrile (AIBN) as the radical initiator, polymerization was carried out directly on the electrode surface in the presence of an electroactive template molecule, hydroquinone (HQ). Detection of HQ using the clicked-on MIP sensor was studied using chronoamperometry and its behavior was compared to that of a sensor prepared by drop-coating MIPs onto Au. The detection limit of the clicked-on MIP sensor for HQ was found to be 1.21±0.56 μM, about four times lower than what was observed using the coated-on MIP sensor. In addition, the sensitivity of the clicked-on MIP sensor was found to be approximately three times greater than the coated-on MIP sensor. Apparent diffusion coefficients determined using chronoamperometry suggest that the improved performance is likely due to the favorable mass transfer characteristics of the clicked-on MIP sensing membrane.  相似文献   

6.
A new method for attaching antibodies to protein-repellent zwitterionic polymer brushes aimed at recognizing microorganisms while preventing the nonspecific adsorption of proteins is presented. The poly(sulfobetaine methacrylate) (SBMA) brushes were grafted from α-bromo isobutyryl initiator-functionalized silicon nitride (Si(x)N(4), x ≥ 3) surfaces via controlled atom-transfer radical polymerization (ATRP). A trifunctional tris(2-aminoethyl)amine linker was reacted with the terminal alkylbromide of polySBMA chains. N-Hydroxysuccinimide (NHS) functionalization was achieved by reacting the resultant amine-terminated polySBMA brush with bifunctional suberic acid bis(N-hydroxysuccinimide ester). Anti-Salmonella antibodies were subsequently immobilized onto polySBMA-grafted Si(x)N(4) surfaces through these NHS linkers. The protein-repellent properties of the polySBMA-grafted surface after antibody attachment were evaluated by exposing the surfaces to Alexa Fluor 488-labeled fibrinogen (FIB) solution (0.1 g·L(-1)) for 1 h at room temperature. Confocal laser scanning microscopy (CLSM) images revealed the minimal adsorption of FIB onto the antibody-coated polySBMA in comparison with that of antibody-coated epoxide monolayers and also bare Si(x)N(4) surfaces. Subsequently, the interaction of antibodies immobilized onto polySBMA with SYTO9-stained Salmonella solution without using blocking solution was examined by CLSM. The fluorescent images showed that antibody-coated polySBMA efficiently captured Salmonella with only low background noise as compared to antibody-coated monolayers lacking the polymer brush. Finally, the antibody-coated polySBMA surfaces were exposed to a mixture of Alexa Fluor 647-labeled FIB and Salmonella without the prior use of a blocking solution to evaluate the ability of the surfaces to capture bacteria while simultaneously repelling proteins. The fluorescent images showed the capture of Salmonella with no adsorption of FIB as compared to antibody-coated epoxide surfaces, demonstrating the potential of the zwitterionic layer in preventing the nonspecific adsorption of the proteins during the detection of bacteria in complex matrices.  相似文献   

7.
A series of near-IR-absorbing soluble phthalocyanines (Pcs) with eight alkyne moieties as side chains of the chromophore have been synthesized. One of these Pcs has been used as a scaffold for functional group modification using alkyne-azide click chemistry with various azides. This led to a small library of Pcs with photo and thermal crosslinkable, dendritic, and hydrophilic moieties starting from a single Pc molecule. A patterned thin film was fabricated by photocrosslinking one of these Pc derivatives.  相似文献   

8.
Polymer brushes decorated reduced GO (rGO) with advanced applications have been prepared by bioinspired polydopamine (PDA) chemistry integrated with activators regenerated by electron transfer atom transfer radical polymerization (ARGET‐ATRP) technique. First, rGO/PDA was obtained by the process for graphene oxide (GO) coated with a homogeneous bio‐adhesive PDA layer. Then the initiator 2‐bromoisobutyryl bromide (BIBB) was immobilized on the surface of PDA functionalized rGO. Finally, rGO/PDA‐Br was polymerized with N, N‐diethylaminoethyl methacrylate (DEAEMA) and glycidyl methacrylate (GMA) to obtain rGO/PDA‐g‐polymer brushes by ARGET‐ATRP process. The prepared rGO/PDA‐g‐PGMA brush would be subjected to further functionalization with ethylenediamine (EDA), which would impart the obtained products (rGO/PDA‐g‐PGMA‐NH2) with good adsorption ability toward cationic dyes. The chemical structures and morphologies of the functionalized GO products have been characterized in detail by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermal gravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope(TEM), and atomic force microscopy (AFM). The distinctive pH‐responsive character of rGO/PDA‐g‐PDEAEMA and adsorption ability of rGO/PDA‐g‐PGMA‐NH2 for cationic dyes have been explored by UV–vis spectrophotometer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 689–698  相似文献   

9.
A two-step process based on copper-free click chemistry is described, by which the surface of silicon nanowires can be functionalized with specific organic substituents. A hydrogen-terminated nanowire surface is first primed with a monolayer of an α,ω-diyne and thereby turned into an alkyne-terminated, clickable platform, which is subsequently coupled with an overlayer of an organic azide carrying the desired terminal functionality. The reactive, electron-deficient character of the employed diyne enabled a quantitative coupling reaction at 50 °C without metal catalysis, which opens up a simple and versatile route for surface functionalization under mild conditions without any potentially harmful additives.  相似文献   

10.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Carbohydrate microarrays can be prepared by microcontact printing of carbohydrate alkyne conjugates on azide self-assembled monolayers (SAMs). The carbohydrates are immobilized by a "click" reaction in the contact area between the stamp and the substrate. The immobilized carbohydrates retain their characteristic selectivity toward lectins.  相似文献   

12.
The use of thiol-ene click chemistry is demonstrated for the first time as a suitable method for cross-linking thin films of 4-phenylethenyl end-capped poly(fluorene). Cross-linking was accomplished by a simple, brief UV curing step at modest temperatures. This chemistry provides an advantage over similar schemes employed for cross-linking conjugated polymers since it does not require elevated temperature or produce potentially detrimental side products. Thiol-ene cross-linking was found to preserve the emissive color integrity of the poly(fluorene) films and allowed for facile photopatterning of the active polymer layer. Furthermore, the investigated cross-linking chemistry was shown to be fully compatible with fabrication of polymer light-emitting diodes (PLEDs) whose performance was comparable to noncross-linked devices. Multicolor PLEDs were also demonstrated by taking advantage of the photopatternability of the thiol-ene based system.  相似文献   

13.
Dendronized linear polymers are prepared from dendritic azides and poly(vinylacetylene) using "click chemistry." The Cu(I)-catalyzed Huisgen [2 + 3] cycloaddition is quantitative up to the third generation.  相似文献   

14.
The CuAAC-'click' reaction under anhydrous conditions is reported as a new tool for the preparation of moisture-sensitive triethoxysilyl compounds that are obtained in 5 minutes in excellent yield with simple purification.  相似文献   

15.
Acid-degradable molecular brushes with polycarbonate backbone and densely grafted side chains (∼1.9 SCs per backbone repeating unit) were synthesized for the first time using the grafting-onto method. Extremely efficient copper-catalyzed azide-alkyne cycloaddition click reactions between the polycarbonate backbone containing two pendant azido groups per backbone unit and alkynyl-terminated poly (methyl acrylate) (ay-PMA72, average degree of polymerization DP = 72) SCs were demonstrated to finish in 10 min with a quantitative conversion of the azido groups. Similar grafting efficiencies were also achieved when using alkynyl-terminated polystyrene (ay-PS), poly(ethylene oxide) (ay-PEO), and poly (t-butyl acrylate)-b-polystyrene (ay-PtBA-b-PS) to successfully prepare molecular brushes with high grafting density (>1.8 SCs per backbone repeating unit). Under acidic condition, the polycarbonate backbones were completely degradable and the final degraded product of the molecular brushes was a linear polymer chain with molecular weight two times of the SCs. When a mixture of hydrophobic ay-PS and hydrophilic ay-PEO chains was used, amphiphilic heterobrushes PC-g-(PS-co-PEO) were synthesized, which could self-assemble into micelles or vesicles in selective solvents, depending on the ratio of the two SCs in the brush. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 239–248  相似文献   

16.
Graphene sheets modified by phenylacetylene moieties provide a facile platform for attaching various photoactive functional molecules via"click" chemistry. The produced photoactive graphene materials are well-dispersed in various solvents and show dramatically improved photo-current responses.  相似文献   

17.
In this work, a model based in strong‐stretching theory for polymer brushes grafted to finite planar surfaces is developed and solved numerically for two geometries: stripe‐like and disk‐like surfaces. There is a single parameter, , which represents the ratio between the equilibrium brush height and the grafting surface size, that controls the behavior of the system. When is large, the system behaves as if the polymer were grafted to a single line or point and the brush adopts a cylindrical or spherical shape. In the opposite extreme when it is small, the brush behaves as semi‐infinite and can be described as a planar undeformed brush region and an edge region, and the line tension approaches a limiting value. In the intermediate case, a brush with non‐uniform height and chain tilting is observed, with a shape and line tension depending on the value of . Relative stability of disk‐shaped, stripe‐shaped, and infinite lamellar micelles is analyzed based in this model. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 663–672  相似文献   

18.
DNA patterning on surfaces has broad applications in biotechnology, nanotechnology, and other fields of life science. The common patterns make use of the highly selective base pairing which might not be stable enough for further manipulations. Furthermore, the fabrication of well-defined DNA nanostructures on solid surfaces usually lacks chemical linkages to the surface. Here we report a template-free strategy based on "click" chemistry to fabricate spatially controlled DNA nanopatterns immobilized on surfaces. The self-assembly process utilizes DNA with different anchoring sites. The position of anchoring is of crucial importance for the self-assembly process of DNA and greatly influences the assembly of particular DNA nanopatterns. It is shown that the anchoring site in a central position generates tunable nanonetworks with high regularity, compared to DNAs containing anchoring sites at terminal and other positions. The prepared patterns may find applications in DNA capturing and formation of pores and channels and can serve as templates for the patterning using other molecules.  相似文献   

19.
Spherical molecular brushes with amphiphilic heteroarms were facilely synthesized by grafting the arms of hydrophobic 2-azidoethyle palmitate and hydrophilic monoazide-terminated poly(ethylene glycol) onto the core of alkyne-modified hyperbranched polyglycerol (HPG) with high molecular weight (M n = 122 kDa) via one-pot parallel click chemistry. The parallel click grafting strategy was demonstrated to be highly efficient (~100%), very fast (~ 2 h) and well controllable to the amphilicity of molecular brushes. Through adjusting the feeding ratio of hydrophobic and hydrophilic arms, a series of brushes with different arm ratios were readily obtained. The resulting miktoarms hyperbranched polymer brushes (HPG-g-C16/PEG350) were characterized by hydrogen-nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) measurements. The spherical molecular brushes showed high molecular weights up to 230 kDa, and thus could be visualized by atomic force microscopy (AFM). AFM and dynamic laser light scattering (DLS) were employed to investigate the self-assembly properties of amphiphilic molecular brushes with closed proportion of hydrophobic and hydrophilic arms. The brushes could self-assemble hierarchically into spherical micelles, and network-like fibre structures, and again spherical micelles by addition of n-hexane into the dichloromethane or chloroform solution of brushes. In addition, this kind of miktoarms polymer brush also showed the ability of dye loading via host-guest encapsulation, which promises the potential application of spherical molecular brushes in supramolecular chemistry.  相似文献   

20.
In this study, we formed grafted polystyrene (PS) brushes possessing nanocluster structures through atom transfer radical polymerization from initiator cores presented on Si surfaces that had been generated using reactive ion etching (RIE). We established the surface grafting polymerization kinetics of the nanoclustered PS chains on the Si surfaces to fit their experimentally determined thickness (ellipsometry) and number-average molecular weight (M n) of “free” PS (gel permeation chromatography). The propagation rate (k p) and active grafting species deactivation rate (k d) were obtained from reactions involving styrene concentrations from 0.2 to 2 M. We also used scanning electron microscopy to observe the morphologies of the PS grafted to the surfaces after various reaction times at various styrene concentrations. The PS brushes grafted onto the Si surfaces under styrene concentrations of 0.2, 0.5, 1, and 2 M exhibited clustered structures having cluster diameters of 12, 28, 42, and 45 nm, respectively; from these observations, we calculated the critical grafting density. In addition, we generated highly dense, well-defined patterns of PS on patterned Si(100) surfaces through the use of a very-large-scale integration process involving electron beam lithography and RIE. We employed the RIE system to generate a high density of reactive species at the bottom of the trenches for graft polymerization. After 21 h of grafting, AFM imaging revealed dense line patterns of nanoclustered PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号