首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of oxovanadium(IV) complexes [LV(IV)O] (L = tetradentate Schiff-base ligands such as N,N'-ethylenebis(salicylideneaminate)(2-) (salen) and N,N'-2,2-dimethylpropylenebis(salicylideneaminate)(2-) (salpn)) to [LV(V)O](+), believed to be responsible for the voltammetric response near 0.6 V vs Ag/AgCl in CH(2)Cl(2) in the presence of tetrabutylammonium tetrafluoroborate as a supporting electrolyte, is in fact coupled to a homogeneous process where [LVO](+) coordinates BF(4)(-) to form a neutral complex formulated as [LVOBF(4)]. The formation constants for [VO(salen)BF(4)] and [VO(salpn)BF(4)] are evaluated to be K(salen)(-)(1) = 1.1 x 10(2) M(-)(1) and K(salpn)(-)(1) = 1.4 x 10 M(-)(1), respectively. Crystal structure of [VO(salen)BF(4)] reveals that one of the fluorine atoms in BF(4)(-) is so close to the vanadium(V) atom as to be practically bound in the solid state.  相似文献   

2.
A number of 4-substituted, dipicolinatodioxovanadium(V) complexes and their hydroxylamido derivatives were synthesized to characterize the solid state and solution properties of five- and seven-coordinate vanadium(V) complexes. The X-ray crystal structures of Na[VO2dipic-NH2].2H2O (2) and K[VO2dipic-NO2] (3) show the vanadium adopting a distorted, trigonal-bipyramidal coordination environment similar to the parent coordination complex, [VO2dipic]- (1), reported previously as the Cs+ salt. The observed differences in the chemical shifts of the complexes both in the 1H (ca. 0.7-1.4 ppm) and 51V (ca. 1-11 ppm) NMR spectra were consistent with the electron-donating or electron-withdrawing properties of the substituent groups, respectively. Stoichiometric addition of a series of hydroxylamine ligands (H2NOH, MeHNOH, Me2NOH, and Et2NOH) to complexes 1-3 led to the formation of seven-coordinate vanadium(V) complexes. The X-ray crystal structure of [VO(dipic)(Me2NO)(H2O)].0.5H2O (1c) was found to be similar to the previously characterized complexes [VO(dipic)(H2NO)(H2O)] (1a) and [VO(dipic)(OO-tBu)(H2O)]. While only slight differences in the 1H NMR spectra were observed upon addition of the hydroxylamido ligand, the signals in the 51V NMR spectra change by up to 100 ppm. The addition of the hydroxylamido ligand increased the complex stability of complexes 2 and 3. Evidence for a nonstoichiometric redox reaction was found for the monoalkyl hydroxylamine ligand. The reaction of an unsaturated five-coordinate species with a hydroxylamine to form a seven-coordinate vanadium complex will, in general, dramatically increase the amounts of the vanadium compound that remain intact at pH values near neutral.  相似文献   

3.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

4.
A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.  相似文献   

5.
Two different monoanionic O,N-chelating ligand systems, i.e., [OC6H2(CH2NMe2)-2-Me2-4,6]- (1) and [OCMe2([2]-Py)]- (2), have been applied in the synthesis of vanadium(V) complexes. The tertiary amine functionality in 1 caused reduction of the vanadium nucleus to the 4+ oxidation state with either [VOCl3], [V(=NR)Cl3], or [V(=NR)(NEt2)3] (R = Ph, (3a, 5a), R = p-Tol (3b, 5b)), and applying 1 as a reducing agent resulted in the synthesis of the vanadium(IV) complexes [VO(OC6H2(CH2NMe2)-2-Me2-4,6)2] (4) and [V(=NPh)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (6). In the case of [V(=N-p-Tol)(NEt2)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (7b), the reduction was sufficiently slow to allow its characterization by 1H NMR and variable-temperature studies showed it to be a five-coordinate species in solution. Although the reaction of 1 with [V(=N-p-Tol)(O-i-Pr)3] (9b) did not result in reduction of the vanadium nucleus, vanadium(V) compounds could not be isolated. Mixtures of the vanadium(V) (mono)phenolate, [V(=N-p-Tol)(O-i-Pr)2(OC6H2(CH2NMe2)-2-Me2-4,6)] (10), and the vanadium(V) (bis)phenolate, [V(=N-p-Tol)(O-i-Pr)(OC6H2(CH2NMe2)-2-Me2-4,6)2] (11), were obtained. With the pyridylalkoxide 2, no reduction was observed and the vanadium(V) compounds [VOCl2(OCMe2([2]-Py))] (12) and [V(=N-p-Tol)Cl2(OCMe2([2]-Py)] (13) were obtained. 51V NMR showed 7b and 12 to be five-coordinate in solution, whereas for 10, 11, and 13 a coordination number of 6 was found. Compounds 12 and 13 showed decreased activity compared to their nonchelated vanadium(V) analogues when applied as catalysts in ethene polymerization. Two polymorphic forms with a difference in the V-N-C angle of 12.5 degrees have been found for 6. Crystal data: 6.Et2O, triclinic, P1, a = 11.1557(6) A, b = 12.5744(12) A, c = 13.1051(14) A, alpha = 64.244(8) degrees, beta = 70.472(7) degrees, gamma = 87.950(6) degrees, V = 1547(3) A3, Z = 2; 6.C6H6, triclinic, P1, a = 8.6034(3) A, b = 13.3614(4) A, c = 15.1044(5) A, alpha = 98.182(3) degrees, beta = 105.618(2) degrees, gamma = 107.130(2) degrees, V = 1551.00(10) A3, Z = 2; 12, orthorhombic, Pbca, a = 11.8576(12) A, b = 12.6710(13) A, c = 14.722(2) A, V = 2211.9(4) A3, Z = 8.  相似文献   

6.
A number of Re complexes with N,N'-bis(2-pyridylmethyl)ethylenediamine (H2pmen) have been made from [NH4][ReO4]. [ReOCl2(H2pmen)]Cl, [ReOCl(Hpmen)][ReO4], and [ReO2(H2pmen)][ReO4] are related by hydrolysis/HCl substitution. [ReOCl(Hpmen)][ReO4] was structurally characterized and found to contain a water-stable amido-Re bond. Dehydrogenation of the N-donor ligand from each amine to imine with concomitant two-electron reduction of the Re center occurs readily in these systems. With suitable 3-hydroxy-4-pyrones, ternary complexes such as [ReIIICl(ma)(C14H14N4)][ReO4].CH3OH, 5, were made from [NH4][ReO4], H2pmen.4HCl and pyrones in one-pot syntheses. 5, a seven-coordinate ReIII complex, was structurally characterized.  相似文献   

7.
Vanadium Complexes with Tridentate Diacidic Ligands. The Crystal Structures of Bis[acetylacetonato-thiobenzoylhydrazonato(2-)]vanadium(IV), Methoxo-oxo-[salicylaldehyd-thiobenzoylhydrazonato(2-)]vanadium(V), and Methoxo-oxo-[salicylaldehydbenzoylhydrazonato(2-)]methanol Vanadium(V) By template reactions of bis(acetylacetonato)oxovanadium(IV) and bis(salicylaldehydato)oxo-vanadium(IV), respectively, with benzoylhydrazine, thiobenzoylhydrazine, and 2-aminophenol the vanadium(IV) complexes V(LLL)2 of tridentate azomethine ligands LLL were synthesized. The complexes were characterized by EPR spectroscopy and by absorption spectroscopy. From the complex V(LLL)2 ( 1 ), in which LLL is acetyl-aceton-thiobenzoydrazonate(2-), the crystal structure analysis was solved. The vanadium atom in 1 is coordinated trigonal-prismatically by two N, 0 and S atoms. Furthermore, the 0x0 vanadium(V) complexes[VO(LLL)(OCH,)] (6) with LLL = salicylaldehyd-thio-benzoylhydrazonato(2-) and [VO(LLL)(OCH3)· -CH3OH] (7) with LLL = salicylaldehydbenzoylhydrazonato(2-) were identified by X-ray diffraction and by IR spectroscopy in the reaction products. Crystallographic data for 1, 6 , and 7 see ?Inhaltsübersicht”?.  相似文献   

8.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

9.
A series of oxorhenium(V) complexes with 2-aminoethanethiolate (aet), [ReO(aet-N,S)(D-pen-N,O,S)] (2), [[ReO(aet-N,S)(2)](2)O] (3), [ReO(Cl)(aet-N,S)(2)] (4), and [ReO(aet-N,S)(Haet-S)(2)]Cl(2) ([5]Cl(2)) was newly prepared starting from ReO(4)(-). The reaction of NH(4)ReO(4) with a 1:1 mixture of Haet.HCl and D-H(2)pen (D-penicillamine) in the presence of SnCl(2).2H(2)O in water gave 2, 3, and the known complex [ReO(D-Hpen-N,S)(D-pen-N,O,S)] (1). These complexes were fractionally precipitated by controlling the pH of the reaction solution. The complex 2 was also prepared in a higher yield by a similar reaction using methanol as a solvent. The crystal structure of 2 was determined by X-ray crystallography; 2 crystallizes in the tetragonal space group P4(3) with a = 9.621(1), c = 12.911(1) A, V = 1195.0(3) A(3), and Z = 4. The oxorhenium(V) core in 2 is coordinated by a bidentate-N,S aet ligand and a tridentate-N,O,S D-pen ligand, having a distorted octahedral geometry with a cis-N cis-S configuration in the equatorial plane perpendicular to the O-Re-O axis. The 1:2 reaction of NH(4)ReO(4) with Haet.HCl in the presence of SnCl(2).2H(2)O in methanol produced 4, which is interconvertible with 3, while the corresponding 1:3 reaction resulted in the isolation of [5]Cl(2). The complexes 4 and 5 were also structurally characterized; 4 crystallizes in the monoclinic space group P2(1)/c with a = 6.839(1), b = 10.0704(6), c = 14.1075(8) A, beta = 91.729(8) degrees, V = 971.2(2) A(3), and Z = 4, while [5]Cl(2) crystallizes in the triclinic space group P1 with a = 11.938(3), b = 12.366(3), c = 5.819(1) A, alpha = 102.71(2), beta = 101.28(2), gamma = 75.41(2) degrees, V = 802.0(3) A(3), and Z = 2. In 4, the oxorhenium(V) core is octahedrally coordinated by two bidentate-N,S aet ligands, which form a cis-N cis-S configurational equatorial plane with a Cl(-) ion trans to the oxo ligand. On the other hand, the oxorhenium(V) core in [5](2+) is coordinated by one bidenate-N,S aet and two monodentate-S Haet ligands, having a distorted trigonal-bipyramidal geometry with S and N donors at the apical positions.  相似文献   

10.
As a contribution to the development of novel vanadium complexes with pharmacologically interesting properties, two neutral dioxovanadium(V) complexes [VO2(Hpydx-sbdt)] (1) and [VO2(Hpydx-smdt)] (3) [H2pydx-sbdt (I) and H2pydx-smdt (II) are the Schiff bases derived from pyridoxal and S-benzyl- or S-methyldithiocarbazate] have been synthesized by the reaction of [VO(acac)2] and the potassium salts of the ligands in methanol followed by aerial oxidation. Heating of the methanolic solutions of these complexes yields the oxo-bridged binuclear complexes [{VO(pydx-sbdt)}2mu-O] (2) and [{VO(pydx-smdt)}2mu-O] (4). The crystals and molecular structures of 1, 3 x 1.5H2O, and 4 x 2CH3OH have been determined, confirming the ONS binding mode of the dianionic ligands in their thioenolate form. The ring nitrogen of the pyridoxal moiety is protonated in complexes 1 and 3. Acidification of 1 and 3 with HCl dissolved in methanol afforded oxohydroxo complexes, while in a methanolic KOH solution, the corresponding dioxo species K[VO2(pydx-sbdt/smdt)] are formed. Treatment of 1 and 3 with H2O2 yields (unstable) oxoperoxovanadium(V) complexes, the formation of which has been established spectrophotometrically. In vitro antiamoebic activities (against HM1:1MSS strain of Entamoeba histolytica) were established for all of the dioxo- and oxovanadium(V) complexes. The complexes 1, 2, and 4 were more effective than metronidazole, a commonly used drug against amoebiasis, suggesting that oxovanadium(V) complexes derived from thiohydrazones may open a new dimension in the therapy of amoebiasis.  相似文献   

11.
The complex formation of vanadium(IV) with cis-inositol (ino) and the corresponding trimethyl ether 1,3,5-trideoxy-1,3,5-trimethoxy-cis-inositol (tmci) was studied in aqueous solution and in the solid-state. With increasing pH, the formation of [VO(H-2L)], [(VO)2L2H-5]-, [VO(H-3L)]- (L = ino) or [(VO)2L2H-6]2- (L = tmci), [V(H-3L)2]2-, and [VO(H-3L)(OH)2]3- was observed. For the vanadium(IV)/ino system, [(VO)2L2H-7]3- was observed as an additional dinuclear species. The formation constants of these complexes were determined by potentiometric titrations (25 degrees C, 0.1 M KCl). In addition, the vanadium(IV)/ino system was investigated by means of UV-vis spectrophotometric methods. EPR spectroscopy and cyclic voltammetry confirmed this complexation scheme. EPR measurements indicated the formation of three distinct isomers of the non-oxo complex [V(H-3ino)2]2- in weakly basic solution. This type of isomerism, which is not observed for the vanadium(IV)/tmci system, was assigned to the ability of ino to bind the vanadium(IV) center with three alkoxo groups having either a 1,3,5-triaxial or an 1,2,3-axial-equatorial-axial arrangement. The structures of [V(H-3ino)2][K2(ino)2].4H2O (1) and [Na6V(H-3ino)2](SO4)2.6H2O (2) were determined by single-crystal X-ray analysis. In both compounds, the coordination of each ino molecule to the vanadium(IV) center via three axial deprotonated oxygen donors was confirmed. The centrosymmetric structure of the coordination spheres corresponds to an almost regular octahedral geometry with a twist angle of 60 degrees. The crystal structure of the potassium complex 1 represents an unusual 1:1 packing of [V(H-3ino)2]2- dianions and [K2(ino)2]2+ dications, in which both K+ ions have a coordination number of nine and are bonded simultaneously to a 1,3,5-triaxial and an 1,2,3-axial-equatorial-axial site of ino. In 2, the [V(H-3ino)2]2- complexes are surrounded by six Na+ counterions that are bonded to the axial alkoxo oxygens and to the equatorial hydroxy oxygens of the cis-inositolato moieties. The six Na+ centers are further interlinked by bridging sulfate ions. According to EPR spectroscopy, the D3d symmetric structure of the [V(H-3ino)2]2- anion is retained in H2O, in dimethylformamide, and in a mixture of CHCl3/toluene 60:40 v/v.  相似文献   

12.
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1- [VO2L1]- and 2 [(VOL2)2(OMe)2] (where H2L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2' '-yl)-1H-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies. For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.  相似文献   

13.
A general protocol for the synthesis of micro-oxo divanadium(V) compounds [LOV(micro-O)VO(Salen)] (1-5) incorporating coordination asymmetry has been developed for the first time. One of the vanadium centers in these compounds has an octahedral environment, completed by tetradentate Salen ligand, while the remaining center has square pyramidal geometry, made up of tridentate biprotic Schiff-base ligands (L2-) with ONO (1-3) and ONS (4, 5) type donor combinations. Single crystal X-ray diffraction analysis, ESI-MS, and NMR (both 1H and 51V) spectroscopy have been used extensively to establish their identities. The V(1)-O(6)-V(2) bridge angle in these compounds, save 3, lie in a narrow range (166.20(9)-157.79(16) degrees) with the V2O3 core having a rare type of twist-angular structure, somewhat intermediate between the regular anti-linear and the syn-angular modes. For 3, however, the bridge angle is sufficiently smaller 117.92(8) degrees that it forces the V2O3 core to adopt an anti-angular geometry. The V(1)...V(2) separations in these molecules (3.7921(7)-3.3084(6) A) are by far the largest compared to their peers containing a V2O3 core. The molecules retain the binuclear structures also in solution as confirmed by NMR spectroscopy. Their redox behaviors appear quite interesting, each undergoing a one-electron reduction in the positive potential range (E1/2, 0.42-0.45 V vs Ag/AgCl) to generate a trapped-valence mixed-oxidation products [LVVO-(micro-O)-OVIV(salen)]1-, confirmed by combined coulometry-EPR experiments. The bent V-O-V bridge in these molecules probably prevents the symmetry-constrained vanadium d xy orbitals, containing the unpaired electron, to overlap effectively via the ppi orbitals of the bridging oxygen atom, thus accounting for the trapped-valence situation in this case.  相似文献   

14.
The reaction of rhenium (VII) trioxo complexes containing the ligand sets scorpionate, [HB(pz)3]ReO3 (6), [Ph-B(pz)3]ReO3 (7), and [[HC(pz)3]ReO3][ReO4] (8) and pyridine/pyridine-type ligands [(4,7-diphenyl-1,10-phen)(Br)ReO3] (12), [(4,4'-di-tert-butyl-2,2'-dipyridyl)(Cl)ReO3] (13), and [(py)2Re(Cl)O3] (4), with diphenyl ketene, has led to the isolation of six novel [3 + 2] cycloaddition products. These air-stable solids 9-11 and 15-17 are the result of [3 + 2] addition of the O=Re=O motif across the ketene C=C double bond. Five of the six [3 + 2] cycloaddition products have been structurally characterized by single-crystal X-ray diffraction and in all cases by 13C NMR and IR spectroscopies.  相似文献   

15.
Dinuclear oxovanadium(V) compounds [LV(V)O(mu-OH)OV (V)L](PF6) [H2L = N,N'-tert-ethylene bis(salicylideneimine) (H 2Salen) and its derivatives] ( 1- 3) have been obtained by aerial oxidation of V (IV)OL precursors in THF in the presence of added NH 4PF 6. The oxidized vanadium(V) probably extracts an OH (-) ligand from the residual moisture in the solvent and is retained as an unsupported hydroxo-bridge between the metal centers of these compounds as confirmed by single-crystal X-ray diffraction analyses. The molecules of 1- 3 have centrosymmetric structures with each vanadium center having a distorted octahedral geometry. The bridging OH (-) group is located trans to the terminal VO t bond. The latter exerts strong trans labilizing influence to set the participating vanadium centers apart by about 4.1 A. These separations are by far the largest (e.g., V...V#, 4.131 A in 1) among all binuclear compounds containing an unsupported hydroxo bridge reported to date. The complexes retain their identity also in solution as established by (1)H NMR spectroscopy. Electrochemically, the behaviors of 1-3 are quite interesting as studied by cyclic voltammetry in acetonitrile, each undergoing three (except 3) nearly reversible metal-based reductions, all in the positive potential range (e.g., at E (1/2) = 0.57, 0.39, and 0.04 V versus Ag/AgCl reference for 1) as indicated by steady state voltammetry. The electrode process at 0.39 V appears to involve a single-step two-electron transfer as revealed from the normal and differential pulse voltammetric data and probably includes a combination of V(V)-V(IV) <--> V(III)-V(IV) mixed oxidation states. Compounds 1-3 thus provide a unique example of divanadium compounds in which the metal centers are linked by an unsupported hydroxo-bridge.  相似文献   

16.
Intermediates of chromium-salen catalyzed alkene epoxidations were studied in situ by EPR, (1)H and (2)H NMR, and UV-vis/NIR spectroscopy (where chromium-salens were (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (1) and racemic N,N'-bis(3,4,5,6-tetra-deuterosalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (2)). High-valence chromium complexes, intermediates of epoxidation reactions, were detected and characterized by EPR and NMR. They are the reactive mononuclear oxochromium(V) intermediate (A) Cr(V)O(salen)L (where L = Cl(-) or a solvent molecule) and an inactive chromium-salen binuclear complex (B) which acts as a reservoir of the active species. The latter complex demonstrates an EPR signal characteristic of oxochromium(V)-salen species and (1)H NMR spectra typical for chromium(III)-salen complexes, and it is identified as mixed-valence binuclear L(1)(salen)Cr(III)OCr(V)(salen)L(2) (L(1), L(2) = Cl(-) or solvent molecules). The intermediates Cr(V)O(salen)L and L(1)(salen)Cr(III)OCr(V)(salen)L(2) exist in equilibrium, and their ratio can be affected by addition of donor ligands (DMSO, DMF, H(2)O, pyridine). Addition of donor additives increases the fraction of A over that of B. The same two complexes can be obtained with m-CPBA as oxidant. Reactivities of the Cr(V)O(salen)L complexes toward E-beta-methylstyrene were measured in DMF. The L(1)(salen)Cr(III)OCr(V)(salen)L(2) intermediate has been proposed to be a reservoir of the true reactive chromium(V) species. The chromium-salen catalysts demonstrate low turnover numbers (ca. 5), probably due to ligand degradation processes.  相似文献   

17.
Binuclear, mu-bis(oxo)bis{oxovanadium(V)} complexes [(VOL)2(mu-O)2](2 and 7)(where HL are the hydrazones Hacpy-nah I or Hacpy-fah II; acpy = 2-acetylpyridine, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) were prepared by the reaction of [VO(acac)2] and the ligands in methanol followed by aerial oxidation. The paramagnetic intermediate complexes [VO(acac)(acpy-nah)](1) and [VO(acac)(acpy-fah)](6) have also been isolated. Treatment of [VO(acac)(acpy-nah)] and [VO(acac)(acpy-fah)] with aqueous H2O2 yields the oxoperoxovanadium(V) complexes [VO(O2)(acpy-nah)](3) and [VO(O2)(acpy-fah)](8). In the presence of catechol (H2cat) or benzohydroxamic acid (H2bha), 1 and 6 give the mixed chelate complexes [VO(cat)L](HL =I: 4, HL =II: 9) or [VO(bha)L](HL =I: 5, HL =II: 10). Complexes 4, 5, 9 and 10 slowly convert to the corresponding oxo-mu-oxo species 2 and 7 in DMF solution. Ascorbic acid enhances this conversion under aerobic conditions, possibly through reduction of these complexes with concomitant removal of coordinated catecholate or benzohydroxamate. Acidification of 7 with HCl dissolved in methanol afforded a hydroxo(oxo) complex. The crystal and molecular structure of 2.1.5H2O has been determined, and the structure of 7 re-determined, by single crystal X-ray diffraction. Both of these binuclear complexes contain the uncommon asymmetrical {VO(mu-O)}2 diamond core. The in vitro tests of the antiamoebic activity of ligands I and II and their binuclear complexes 2 and 7 against the protozoan parasite Entamoeba histolytica show that the ligands have no amoebicidal activity while their vanadium complexes 2 and 7 display more effective amoebicidal activity than the most commonly used drug metronidazole (IC50 values are 1.68 and 0.45 microM, respectively vs 1.81 microM for metronidazole). Complexes 2 and 7 catalyse the oxidation of styrene and ethyl benzene effectively. Oxidation of styrene, using H2O2 as an oxidant, gives styrene epoxide, 2-phenylacetaldehyde, benzaldehyde, benzoic acid and 1-phenyl-ethane-1,2-diol, while ethyl benzene yields benzyl alcohol, benzaldehyde and 1-phenyl-ethane-1,2-diol.  相似文献   

18.
The syntheses and the solid state structural and spectroscopic solution characterizations of VO(Me-acac)2 and VO(Et-acac)2 (where Me-acac is 3-methyl-2,4-pentanedionato and Et-acac is 3-ethyl-2,4-pentanedionato) have been conducted since both VO(acac)2 and VO(Et-acac)2 have long-term in vivo insulin-mimetic effects in streptozotocin-induced diabetic Wistar rats. X-ray structural characterizations of VO(Me-acac)2 and VO(Et-acac)2 show that both contain five-coordinate vanadium similar to the parent VO(acac)2. The unit cells for VO(Et-acac)2 and VO(Me-acac)2 are both triclinic, P1, with a = 9.29970(10) A, b = 13.6117(2) A, c = 13.6642(2) A, alpha = 94.1770(10) degrees, beta = 106.4770(10) degrees, gamma = 106.6350(10) degrees for VO(Et-acac)2 and a = 7.72969(4) A, b = 8.1856(5) A, c = 11.9029(6) A, alpha = 79.927(2) degrees, beta = 73.988(2)degrees, gamma = 65.1790(10)degrees for VO(Me-acac)2. The total concentration of EPR-observable vanadium(IV) species for VO(acac)2 and derivatives in water solution at 20 degreesC was determined by double integration of the EPR spectra and apportioned between individual species on the basis of computer simulations of the spectra. Three species were observed, and the concentrations were found to be time, pH, temperature, and salt dependent. The three complexes are assigned as the trans-VO(acac)2.H2O adduct, cis-VO(acac)2.H2O adduct, and a hydrolysis product containing one vanadium atom and one R-acac- group. The reaction rate for conversion of species was slower for VO(acac)2 than for VO(malto)2, VO(Et-acac)2, and VO(Me-acac)2; however, in aqueous solution the rates for all of these species are slow compared to those of other vanadium species. The concentration of vanadium(V) species was determined by 51V NMR. The visible spectra were time dependent, consistent with the changes in species concentrations that were observed in the EPR and NMR spectra. EPR and visible spectroscopic studies of solutions prepared as for administration to diabetic rats documented both a salt effect on speciation and formation of a new halogen-containing complex. Compound efficacy with respect to long-term lowering of plasma glucose levels in diabetic rats traces the concentration of the hydrolysis product in the administration solution.  相似文献   

19.
Reaction of the amide ligand N-[2-((2-pyridylmethylene)amino)phenyl]pyridine-2-carboxamide (Hcapca) with VCl(3) affords the compound trans-[VCl(2)(capca)] (1), the first example of a vanadium(III) complex containing a vanadium-deprotonated amide nitrogen bond, while reaction of bis(pentane-2,4-dionato)oxovanadium(IV) with the related ligands N-[2-((2-phenolylmethylene)amino)phenyl]pyridine-2-carboxamide (H(2)phepca), 1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzene (H(3)hypyb), and 1,2-bis(2-hydroxybenzamido)benzene (H(4)hybeb) yields the complexes [VO(phepca)] (2), Na[VO(hypyb)].2CH(3)OH (4.2CH(3)OH), and Na(2)[VO(hybeb)].3CH(3)OH (5.3CH(3)OH) respectively. The preparation of the complex {N-[2-((2-thiophenoylmethylene)amino)phenyl]pyridine-2-carboxamido}oxovanadium(IV) (3) has been achieved by reaction of N-(2-aminophenyl)pyridine-2-carboxamide and 2-mercaptobenzaldehyde with [VO(CH(3)COO)(2)](x)(). Oxidation of complex 5.3CH(3)OH with silver nitrate gives its vanadium(V) analogue (8.CH(3)OH), which is readily converted to its corresponding tetraethylammonium salt (10.CH(2)Cl(2)) by a reaction with Et(4)NCl. The crystal structures of the octahedral 1.CH(3)CN, and the square-pyramidal complexes 3, 4.CH(3)CN, 5.2CH(3)OH, and 10 were demonstrated by X-ray diffraction analysis. Crystal data are as follows: 1.CH(3)CN, C(18)H(13)Cl(2)N(4)OV.CH(3)CN M(r) = 464.23, monoclinic, P2(1)/n, a = 10.5991(7) ?, b = 13.9981(7) ?, c = 14.4021(7) ?, beta = 98.649(2)(o), V = 2112.5(3) A(3), Z = 4, R = 0.0323, and R(w) 0.0335; 3, C(19)H(13)N(3)O(2)SV, M(r) = 398.34, monoclinic, P2(1)/n, a = 12.1108(10) ?, b = 19.4439(18) ?, c = 7.2351(7) ?, beta = 103.012(3) degrees, V = 1660.0(4) ?(3), Z = 4, R = 0.0355, and R(w) = 0.0376; 4.CH(3)CN, C(19)H(12)N(3)O(4)VNa.CH(3)CN, M(r) = 461.31, monoclinic, P2(1)/c, a = 11.528(1) ?, b = 11.209(1) ?, c = 16.512(2) ?, beta = 103.928(4)(o), V = 2071.0(5) ?(3), Z = 4, R = 0.0649, and R(w) = 0.0806; 5.2CH(3)OH, C(20)H(10)N(2)O(5)VNa(2).2CH(3)OH, M(r) = 519.31, triclinic, P1, a = 12.839(1) ?, b = 8.334(1) ?, c = 12.201(1) ?, alpha = 106.492(2) degrees, beta = 105.408(2) degrees, gamma = 73.465(2) degrees, V = 1175.6(3) ?(3), Z = 2, R = 0.0894, and R(w) = 0.1043; 10, C(28)H(32)N(3)O(5)V M(r) = 541.52, monoclinic, P2(1)/c, a = 11.711(3) ?, b = 18.554(5) ?, c = 12.335(3) ?, beta = 95.947(9) degrees, V = 2666(2) ?(3), Z = 4, R = 0.0904, and R(w) = 0.0879. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, and electrochemical properties of these complexes. Electron paramagnetic resonance [of oxovanadium(IV) species] and (1)H, (13)C{(1)H}, and (51)V nuclear magnetic resonance [of oxovanadium(V) complex] properties are reported as well. This study represents the first systematic study of vanadium(III), V(IV)O(2+), and V(V)O(3+) species containing a vanadium-deprotonated amide nitrogen bond.  相似文献   

20.
The simultaneous action of the tridentate ligand (C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)SH)(2) and the monodentate coligand HSC(6)H(4)OCH(3) on a suitable ReO(3+) precursor results in a mixture of syn- and anti-oxorhenium complexes, ReO[(C(2)H(5))(2)NCH(2)CH(2)N(CH(2)CH(2)S)(2)] [SC(6)H(4)OCH(3)], in a ratio of 25/1. The complexes are prepared by a ligand exchange reaction using ReO(eg)(2) (eg = ethylene glycol), ReOCl(3)(PPh(3))(2), or Re(V)-citrate as precursor. Both complexes have been characterized by elemental analysis, FT-IR, UV-vis, X-ray crystallography, and NMR spectroscopy. The syn isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in the monoclinic space group P2(1)/n, a = 14.109(4) ?, b = 7.518(2) ?, c = 20.900(5) ?, beta = 103.07(1) degrees, V = 2159.4(9) ?(3), Z = 4. The anti isomer C(17)H(29)N(2)O(2)S(3)Re crystallizes in P2(1)/n, a = 9.3850(7) ?, b = 27.979(2) ?, c = 8.3648(6) ?, beta = 99.86(1) degrees, V = 2163.9(3) ?(3), Z = 4. Complete NMR studies show that the orientation of the N substituent chain with respect to the Re=O core greatly influences the observed chemical shifts. Complexes were also prepared at the tracer ((186)Re) level by using (186)Re-citrate as precursor. Corroboration of the structure at tracer level was achieved by comparative HPLC studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号