首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let F be an infinite field. The primeness property for central polynomials of Mn(F) was established by A. Regev, i.e., if the product of two polynomials in distinct variables is central then each factor is also central. In this paper we consider the analogous property for Mn(F) and determine, within the elementary gradings with commutative neutral component, the ones that satisfy this property, namely the crossed product gradings. Next we consider Mn(R), where R admits a regular grading, with a grading such that Mn(F) is a homogeneous subalgebra and provide sufficient conditions – satisfied by Mn(E) with the trivial grading – to prove that Mn(R) has the primeness property if Mn(F) does. We also prove that the algebras Ma,b(E) satisfy this property for ordinary central polynomials. Hence we conclude that, over a field of characteristic zero, every verbally prime algebra has the primeness property.  相似文献   

2.
3.
4.
5.
Let K be the algebraic closure of a finite field Fq of odd characteristic p. For a positive integer m prime to p, let F=K(x,y) be the transcendence degree 1 function field defined by yq+y=xm+x?m. Let t=xm(q?1) and H=K(t). The extension F|H is a non-Galois extension. Let K be the Galois closure of F with respect to H. By Stichtenoth [20], K has genus g(K)=(qm?1)(q?1), p-rank (Hasse–Witt invariant) γ(K)=(q?1)2 and a K-automorphism group of order at least 2q2m(q?1). In this paper we prove that this subgroup is the full K-automorphism group of K; more precisely AutK(K)=Δ?D where Δ is an elementary abelian p-group of order q2 and D has an index 2 cyclic subgroup of order m(q?1). In particular, m|AutK(K)|>g(K)3/2, and if K is ordinary (i.e. g(K)=γ(K)) then |AutK(K)|>g3/2. On the other hand, if G is a solvable subgroup of the K-automorphism group of an ordinary, transcendence degree 1 function field L of genus g(L)2 defined over K, then |AutK(K)|34(g(L)+1)3/2<682g(L)3/2; see [15]. This shows that K hits this bound up to the constant 682.Since AutK(K) has several subgroups, the fixed subfield FN of such a subgroup N may happen to have many automorphisms provided that the normalizer of N in AutK(K) is large enough. This possibility is worked out for subgroups of Δ.  相似文献   

6.
7.
8.
9.
The purpose of this article is to compute the mod 2 cohomology of Γq(K), the mapping class group of the Klein bottle with q marked points. We provide a concrete construction of Eilenberg–MacLane spaces Xq=K(Γq(K),1) and fiber bundles Fq(K)/ΣqXqB(Z2×O(2)), where Fq(K)/Σq denotes the configuration space of unordered q-tuples of distinct points in K and B(Z2×O(2)) is the classifying space of the group Z2×O(2). Moreover, we show the mod 2 Serre spectral sequence of the bundle above collapses.  相似文献   

10.
Let D be a commutative domain with field of fractions K, let A be a torsion-free D-algebra, and let B be the extension of A to a K-algebra. The set of integer-valued polynomials on A is Int(A)={fB[X]|f(A)?A}, and the intersection of Int(A) with K[X] is IntK(A), which is a commutative subring of K[X]. The set Int(A) may or may not be a ring, but it always has the structure of a left IntK(A)-module.A D-algebra A which is free as a D-module and of finite rank is called IntK-decomposable if a D-module basis for A is also an IntK(A)-module basis for Int(A); in other words, if Int(A) can be generated by IntK(A) and A. A classification of such algebras has been given when D is a Dedekind domain with finite residue rings. In the present article, we modify the definition of IntK-decomposable so that it can be applied to D-algebras that are not necessarily free by defining A to be IntK-decomposable when Int(A) is isomorphic to IntK(A)?DA. We then provide multiple characterizations of such algebras in the case where D is a discrete valuation ring or a Dedekind domain with finite residue rings. In particular, if D is the ring of integers of a number field K, we show that an IntK-decomposable algebra A must be a maximal D-order in a separable K-algebra B, whose simple components have as center the same finite unramified Galois extension F of K and are unramified at each finite place of F. Finally, when both D and A are rings of integers in number fields, we prove that IntK-decomposable algebras correspond to unramified Galois extensions of K.  相似文献   

11.
12.
13.
Let F be a field of characteristic distinct from 2, L=F(d) a quadratic field extension. Let further f and g be quadratic forms over L considered as polynomials in n variables, Mf, Mg their matrices. We say that the pair (f,g) is a k-pair if there exist SGLn(L) such that all the entries of the k×k upper-left corner of the matrices SMfSt and SMgSt are in F. We give certain criteria to determine whether a given pair (f,g) is a k-pair. We consider the transfer corL(t)/F(t) determined by the F(t)-linear map s:L(t)F(t) with s(1)=0, s(d)=1, and prove that if dimcorL(t)/F(t)(f+tg)an2(n?k), then (f,g) is a [k+12]-pair. If, additionally, the form f+tg does not have a totally isotropic subspace of dimension p+1 over L(t), we show that (f,g) is a (k?2p)-pair. In particular, if the form f+tg is anisotropic, and dimcorL(t)/F(t)(f+tg)an2(n?k), then (f,g) is a k-pair.  相似文献   

14.
15.
16.
17.
We investigate the following problem posed by Cabello Sanchéz, Castillo, Kalton, and Yost:Let K be a nonmetrizable compact space. Does there exist a nontrivial twisted sum of c0 and C(K), i.e., does there exist a Banach space X containing a non-complemented copy Y of c0 such that the quotient space X/Y is isomorphic to C(K)?Using additional set-theoretic assumptions we give the first examples of compact spaces K providing a negative answer to this question. We show that under Martin's axiom and the negation of the continuum hypothesis, if either K is the Cantor cube 2ω1 or K is a separable scattered compact space of height 3 and weight ω1, then every twisted sum of c0 and C(K) is trivial.We also construct nontrivial twisted sums of c0 and C(K) for K belonging to several classes of compacta. Our main tool is an investigation of pairs of compact spaces K?L which do not admit an extension operator C(K)C(L).  相似文献   

18.
Let V be a module with S=End(V). V is called a quasi-Baer module if for each ideal J of S, rV(J)=eV for some e2=eS. On the other hand, V is called a Rickart module if for each ?S, Ker(?)=eV for some e2=eS. For a module N, the quasi-Baer module hull qB(N) (resp., the Rickart module hull Ric(N)) of N, if it exists, is the smallest quasi-Baer (resp., Rickart) overmodule, in a fixed injective hull E(N) of N. In this paper, we initiate the study of quasi-Baer and Rickart module hulls. When a ring R is semiprime and ideal intrinsic over its center, it is shown that every finitely generated projective R-module has a quasi-Baer hull. Let R be a Dedekind domain with F its field of fractions and let {Ki|iΛ} be any set of R-submodules of FR. For an R-module MR with AnnR(M)0, we show that MR(?iΛKi)R has a quasi-Baer module hull if and only if MR is semisimple. This quasi-Baer hull is explicitly described. An example such that MR(?iΛKi)R has no Rickart module hull is constructed. If N is a module over a Dedekind domain for which N/t(N) is projective and AnnR(t(N))0, where t(N) is the torsion submodule of N, we show that the quasi-Baer hull qB(N) of N exists if and only if t(N) is semisimple. We prove that the Rickart module hull also exists for such modules N. Furthermore, we provide explicit constructions of qB(N) and Ric(N) and show that in this situation these two hulls coincide. Among applications, it is shown that if N is a finitely generated module over a Dedekind domain, then N is quasi-Baer if and only if N is Rickart if and only if N is Baer if and only if N is semisimple or torsion-free. For a direct sum NR of finitely generated modules, where R is a Dedekind domain, we show that N is quasi-Baer if and only if N is Rickart if and only if N is semisimple or torsion-free. Examples exhibiting differences between the notions of a Baer hull, a quasi-Baer hull, and a Rickart hull of a module are presented. Various explicit examples illustrating our results are constructed.  相似文献   

19.
Let V be an n-dimensional vector space over the finite field consisting of q elements and let Γk(V) be the Grassmann graph formed by k-dimensional subspaces of V, 1<k<n1. Denote by Γ(n,k)q the restriction of Γk(V) to the set of all non-degenerate linear [n,k]q codes. We show that for any two codes the distance in Γ(n,k)q coincides with the distance in Γk(V) only in the case when n<(q+1)2+k2, i.e. if n is sufficiently large then for some pairs of codes the distances in the graphs Γk(V) and Γ(n,k)q are distinct. We describe one class of such pairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号