首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We develop a unified approach to integrating the Whitham modulation equations. Our approach is based on the formulation of the initial‐value problem for the zero‐dispersion KdV as the steepest descent for the scalar Riemann‐Hilbert problem [6] and on the method of generating differentials for the KdV‐Whitham hierarchy [9]. By assuming the hyperbolicity of the zero‐dispersion limit for the KdV with general initial data, we bypass the inverse scattering transform and produce the symmetric system of algebraic equations describing motion of the modulation parameters plus the system of inequalities determining the number the oscillating phases at any fixed point on the (x, t)‐plane. The resulting system effectively solves the zero‐dispersion KdV with an arbitrary initial datum. © 2001 John Wiley & Sons, Inc.  相似文献   

2.
We study multiphase solutions of the Whitham equations. The Whitham equations describe the zero dispersion limit of the Cauchy problem for the Korteweg—de Vries (KdV) equation. The zero dispersion solution of the KdV equation is determined by the Lax—Levermore minimization problem. The minimizer is a measurable function on the real line. When the support of the minimizer consists of a finite number of disjoint intervals to be determined, the minimization problem can be reduced to a scalar Riemann Hilbert (RH) problem. For each fixed x and t 0, the end-points of the contour are determined by the solution of the Whitham equations. The Lax—Levermore minimizer and the solution of the Whitham equations are described in terms of a kernel related to the Bergman kernel. At t = 0 the support of the minimizer consists of one interval for any value of x, while for t > 0, the number of intervals is larger than one in some regions of the (x,t) plane where the multiphase solutions of the Whitham equations develop. The increase of the number of intervals happens whenever the solution of the Whitham equations has a point of gradient catastrophe. For a class of smooth monotonically increasing initial data, we show that the support of the Lax—Levermore minimizer increases or decreases the number of its intervals by one near each point of gradient catastrophe. This result justifies the formation and extinction of the multiphase solutions of the Whitham equations. Furthermore we characterize a class of initial data for which all the points of gradient catastrophe occur only a finite number of times and therefore the support of the Lax—Levermore minimizer consists of a finite number of disjoint intervals for any x and t 0. This corresponds to give an upper bound to the genus of the solution of the Whitham equations. Similar results are obtained for the semi-classical limit of the defocusing nonlinear Schrödinger equation.  相似文献   

3.
The Whitham modulation theory for periodic traveling waves of PDEs generated by a Lagrangian produces first‐order dispersionless PDEs that are, generically, either hyperbolic or elliptic. In this paper, degeneracy of the Whitham equations is considered where one of the characteristic speeds is zero. In this case, the Whitham equations are no longer valid. Reformulation and rescaling show that conservation of wave action morphs into the Korteweg–de Vries (KdV) equation on a longer time scale thereby generating dispersion in the Whitham modulation equations even for finite amplitude waves.  相似文献   

4.
We attack the multiphase averaged systems for the zero dispersion limit of the KdV equation. Attention is paid to the most important case—the single phase oscillations. A scheme is developed to solve the Whitham averaged system (single phase averaged system). This system, under our scheme, is transformed to a linear over-determined system of Euler-Poisson-Darboux type whose solution can be written down explicitly. We show that, for any smooth initial data which has only one hump or is a nontrivial monotone function, the weak limit has single-phase oscillations within a cusp in the x-t plane for a short time after the breaking time for the corresponding Burgers equation. Outside the cusp, the limit satisfies the Burgers equation. More surprisingly, we also show that the weak limit has global single-phase oscillations within a cusp for any smooth nontrivial monotone initial data with only one inflection point. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
In the present work, by treating the arteries as thin-walled prestressed elastic tubes with a stenosis and the blood as an inviscid fluid we have studied the propagation of weakly nonlinear waves in such a medium, in the longwave approximation, by employing the reductive perturbation method. The variable coefficients KdV and modified KdV equations are obtained depending on the balance between the nonlinearity and the dispersion. By seeking a localized progressive wave type of solution to these evolution equations, we observed that the wave speeds takes their maximum values at the center of stenosis and gets smaller and smaller as one goes away from the stenosis. Such a result seems to reasonable from the physical point of view.  相似文献   

6.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

7.
We consider a regularization for a class of discontinuous differential equations arising in the study of neutral delay differential equations with state dependent delays. For such equations the possible discontinuity in the derivative of the solution at the initial point may propagate along the integration interval giving rise to so-called “breaking points”, where the solution derivative is again discontinuous. Consequently, the problem of continuing the solution in a right neighborhood of a breaking point is equivalent to a Cauchy problem for an ode with a discontinuous right-hand side (see e.g. Bellen et al., 2009 [4]). Therefore a classical solution may cease to exist.The regularization is based on the replacement of the vector-field with its time average over an interval of length ε>0. The regularized solution converges as ε0+ to the classical Filippov solution (Filippov, 1964, 1988 [13] and [14]). Several properties of the solutions corresponding to small ε>0 are presented.  相似文献   

8.
Reaction random-walk systems are hyperbolic models to describe spatial motion (in one dimension) with finite speed and reactions of particles. Here we present two approaches which relate reaction random-walk equations with reaction diffusion equations. First, we consider the case of high particle speeds (parabolic limit). This leads to a singular perturbation analysis of a semilinear damped wave equation. A initial layer estimate is given. Secondly, we consider the case of a transcritical bifurcation. We use techniques similar to that of the Ginzburg–Landau method to find a modulation equation for the amplitude of the first unstable mode. It turns out that the modulation equation is Fisher's equation, hence near the bifurcation point travelling wave solutions are obtained. The approximation result and the corresponding estimate is given in terms of the bifurcation parameter. Both results are based on an a priori estimate for classical solutions which follows from explicit representations of the solution of the linear telegraph equation. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

9.
We study the multiphases in the KdV zero‐dispersion limit. These phases are governed by the Whitham equations, which are 2g + 1 quasi‐linear hyperbolic equations where g is the number of phases. We are interested in both the interaction of two single phases and the breaking of a single phase for general initial data. We analyze in detail how a double phase is generated from the interaction or breaking, how it propagates in space‐time, and how it collapses to a single phase in a finite time. The Whitham equations are known to be integrable via a hodograph transform. The crucial step in our approach is to formulate the hodograph transform in terms of the Euler‐Poisson‐Darboux solutions. Under our scheme, the zeros of the Jacobian of the transform are given by the zeros of the Euler‐Poisson‐Darboux solution. Hence, the problem of inverting the hodograph transform to give the Whitham solution reduces to that of counting the zeros of the Euler‐Poisson‐Darboux solution. © 2002 Wiley Periodicals, Inc.  相似文献   

10.
The long-time behavior of an initial step resulting in a dispersive shock wave (DSW) for the one-dimensional isentropic Euler equations regularized by generic, third-order dispersion is considered by use of Whitham averaging. Under modest assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs are characterized and found to depend only upon the sign of dispersion (convexity or concavity) and a general pressure law. Two mechanisms leading to the breakdown of this simple wave DSW theory for sufficiently large jumps are identified: a change in the sign of dispersion, leading to gradient catastrophe in the modulation equations, and the loss of genuine nonlinearity in the modulation equations. Large amplitude DSWs are constructed for several particular dispersive fluids with differing pressure laws modeled by the generalized nonlinear Schrödinger equation. These include superfluids (Bose–Einstein condensates and ultracold fermions) and “optical fluids.” Estimates of breaking times for smooth initial data and the long-time behavior of the shock tube problem are presented. Detailed numerical simulations compare favorably with the asymptotic results in the weak to moderate amplitude regimes. Deviations in the large amplitude regime are identified with breakdown of the simple wave DSW theory.  相似文献   

11.
In the recent paper by Kudryashov [11] seven common errors in finding exact solutions of nonlinear differential equations were listed and discussed in detail. We indicate two more common errors concerning the similarity (equivalence with respect to point transformations) and linearizability of differential equations and then discuss the first of them. Classes of generalized KdV and mKdV equations with variable coefficients are used in order to clarify our conclusions. We investigate admissible point transformations in classes of generalized KdV equations, obtain the necessary and sufficient conditions of similarity of such equations to the standard KdV and mKdV equations and carried out the exhaustive group classification of a class of variable-coefficient KdV equations. Then a number of recent papers on such equations are commented using the above results. It is shown that exact solutions were constructed in these papers only for equations which are reduced by point transformations to the standard KdV and mKdV equations. Therefore, exact solutions of such equations can be obtained from known solutions of the standard KdV and mKdV equations in an easier way than by direct solving. The same statement is true for other equations which are equivalent to well-known equations with respect to point transformations.  相似文献   

12.
In this paper, we report on our recent efforts concerning the design of parallel linear multigrid algorithms for the acceleration of 3-dimensional compressible flow calculations. The multigrid strategy adopted in this study relies on a volume agglomeration principle for the construction of the coarse grids starting from a fine discretization of the computational domain. In the past, this strategy has mainly been studied in the 2-dimensional case for the solution of the Euler equations (see Lallemand et al. [6]), the laminar Navier–Stokes equations (see Mavriplis and Venkatakrishnan [12]) and the turbulent Navier–Stokes equations (see Carré [1], Mavriplis [10] and Francescatto and Dervieux [4]). A first extension to the 3-dimensional case is presented by Mavriplis and Venkatakrishnan in [13] and more recently in Mavriplis and Pirzadeh [11]. The main contribution of the present work is twofold: on the one hand, we demonstrate the successful extension and application of the multigrid by a volume agglomeration principle to the acceleration of complex 3-dimensional flow calculations on unstructured tetrahedral meshes and, on the other hand, we enhance further the efficiency of the methodology through its adaptation to parallel architectures. Moreover, a nontrivial aspect of this work is that the corresponding software developments are taking place in an existing industrial flow solver. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
An asymptotic solution of the KdV equation with small dispersion is studied for the case of smooth hump-like initial condition with monotonically decreasing slopes. Despite the well-known approaches by Lax-Levermore and Gurevich-Pitaevskii, a new way of constructing the asymptotics is proposed using the inverse scattering transform together with the dressing chain technique developed by A. Shabat [1]. It provides the Whitham-type approximaton of the leading term by solving the dressing chain through a finite-gap asymptotic ansatz. This yields the Whitham equations on the Riemann invariants together with hodograph transform which solves these equations explicitly. Thus we reproduce an uniform in x asymptotics consisting of smooth solution of the Hopf equation outside the oscillating domain and a slowly modulated cnoidal wave within the domain. Finally, the dressing chain technique provides the proof of an asymptotic estimate for the leading term.   相似文献   

14.
We consider an initial value problem for the KdV equation in the limit of weak dispersion. This model describes the formation and evolution in time of a nondissipative shock wave in plasma. Using the perturbation theory in power series of a small dispersion parameter, we arrive at the Riemann simple wave equation. Once the simple wave is overturned, we arrive at the system of Whitham modulation equations that describes the evolution of the resulting nondissipative shock wave. The idea of the approach developed in this paper is to study the asymptotic behavior of the exact solution in the limit of weak dispersion, using the solution given by the inverse scattering problem technique. In the study of the problem, we use the WKB approach to the direct scattering problem and use the formulas for the exact multisoliton solution of the inverse scattering problem. By passing to the limit, we obtain a finite set of relations that connects the space-time parameters x, t and the modulation parameters of the nondissipative shock wave.Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 106, No. 1, pp. 44–61, January, 1996.  相似文献   

15.
The Lax integrability of the coupled KdV equations derived from two-layer fluids [S.Y. Lou, B. Tong, H.C. Hu, X.Y. Tang, Coupled KdV equations derived from two-layer fluids, J. Phys. A: Math. Gen. 39 (2006) 513-527] is investigated by means of prolongation technique. As a result, the Lax pairs of some Painlevé integrable coupled KdV equations and several new coupled KdV equations are obtained. Finally, the Miura transformations and some coupled modified KdV equations associated with the Lax integrable coupled KdV equations are derived by an easy way.  相似文献   

16.
17.
基于最优化方法求解约束非线性方程组的一个突出困难是计算 得到的仅是该优化问题的稳定点或局部极小点,而非方程组的解点.由此引出的问题是如何从一个稳定点出发得到一个相对于方程组解更好的点. 该文采用投影型算法,推广了Nazareth-Qi$^{[8,9]}$ 求解无约束非线性方程组的拉格朗日全局算法(Lagrangian Global-LG)于约束方程上; 理论上证明了从优化问题的稳定点出发,投影LG方法可寻找到一个更好的点. 数值试验证明了LG方法的有效性.  相似文献   

18.
In this paper, the integral bifurcation method was used to study the higher order nonlinear wave equations of KdV type (III), which was first proposed by Fokas. Some new travelling wave solutions with singular or nonsingular character are obtained. In particular, we obtain a peculiar exact solution of parametric type in this paper. This one peculiar exact solution has three kinds of wave-form including solitary wave, cusp wave and loop solion under different wave velocity conditions. This phenomenon has proved that the loop soliton solution is one continuous solution, not three breaking solutions though the loop soliton solution “is not in agreement with the Poincaré phase analysis”.  相似文献   

19.
In this paper, we consider the spectral stability of spatially periodic traveling wave solutions of the generalized Korteweg–de Vries equation to long‐wavelength perturbations. Specifically, we extend the work of Bronski and Johnson by demonstrating that the homogenized system describing the mean behavior of a slow modulation (WKB) approximation of the solution correctly describes the linearized dispersion relation near zero frequency of the linearized equations about the background periodic wave. The latter has been shown by rigorous Evans function techniques to control the spectral stability near the origin, that is, stability to slow modulations of the underlying solution. In particular, through our derivation of the WKB approximation we generalize the modulation expansion of Whitham for the KdV to a more general class of equations which admit periodic waves with nonzero mean. As a consequence, we will show that, assuming a particular nondegeneracy condition, spectral stability near the origin is equivalent with the local well‐posedness of the Whitham system.  相似文献   

20.
A different approach to finding solutions of certain diffusive-dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, which is carried to all terms, followed by a summation of the resulting infinite series. Sometimes this is done directly and other times in terms of inverses of operators in an appropriate space. We first illustrate the method with Burgers's and Thomas's equations, and show how it quickly leads to the Cole-Hopf and Thomas transformations which linearize these equations. The method is described in detail with the Korteweg-de Vries equation and then applied to the modified KdV, sine-Gordon, nonlinear (cubic) Schrödinger, complex modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained, and new expressions for some of them follow. More generally, the Mar?enko integral equations, together with the inverse problem that originates them, follow naturally from the approach. A method for modifying known solutions (in a way different from the known Backlund transformations) is also developed. Thus, for example, formulas for the interaction of solitons with an arbitrary given solution are obtained. Other equations tractable by this approach are presented. These include the vector-valued cubic Schrödinger equation and a two-dimensional nonlinear Schrödinger equation. Higher-order and matrix-valued equations with nonscalar dispersion functions are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号