首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The green seaweed Caulerpa taxifolia (VAHL ) C. AGARDH (Caulerpales), which, after its recent accidental introduction, is growing in the region of Cap Martin much more vigorously than in the tropics, is shown to contain the known sesquiterpenic toxins caulerpenyne ( 1 ) – in larger amounts than in tropical Caulerpales – and oxytoxin 1 ( 2 ). Novel, potentially toxic products isolated in small amounts from this seaweed include the sesquiterpenes taxifolial A ( = (5E)-6,10-dimethyl-2-[(E)2-oxoethylidene]undeca-5,9-dien-7- yne-1,3-diyl diacetate; 3 ), taxifolial B (= (1E,6E,10E)-3-[( Z )-acetoxymethylidene]-7, 11-dimethyl-12-oxododeca-1,6,10-trien-8-yne-1,4-diyl diacetate; 4 ), 10,11-epoxycaulerpenyne ( = (1E,6E)-3-[(Z)-acetoxymethylidene]-10,11-epoxy-7, 11-dimethyldodeca-1,6-dien-8-yne-1,4-diyl diacetate; 1:1 diastereoisomer mixture; 5 ), and taxifolial C ( = (2Z,6E)-3-formyl-7,11-dimethyldodeca-2,6,10-trien-8-yne-1,1, 4-triyl triacetate; 6 ), besides, as the first example of a monoterpene from the Caulerpales, taxifolial D ( = (2Z)-3,7-dimethylocta-2, 6-dien-4-ynal; 7 ).  相似文献   

2.
The Mediterranean stolonifer Sarcodictyon roseum (= Rolandia rosea) (Cnidaria, Anthozoa, Alcyonaria, Stolonifera, Clavulariidae) is shown to contain two novel diterpenoidic alcohols esterified by (E)-N(1)-methyl-urocanic acid (= E)-3-(l-methyl-lH-imidazol-4-yl)acrylic acid). They are sarcodictyin A ( = (?)-(4R,4a,R, 7R,10S,11S,12aR,lZ,5E,8Z)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-methyl-lH-imidazol-4-yl)acrylate; (?)- 1 ) and sarco-dictyin B (the 6-(ethoxycarbonyl analogue; (?)- 2 ). The assignment of the structures is mainly based on 1D- and 2D-NMR data, as well as on chemical transformations of (?)- 1 , such as transesterification with MeONa/MeOH giving methyl (E)-N(1)-methylurocanate ( 3 ) and the free alcohol (+)- 4 and reduction with LiAlH4 followed by benzoylation giving dibenzoate 7. Absolute configurations are based on Horeau's method of esterification of (+)- 4 .  相似文献   

3.
Extracts from the seeds of Annona muricata yielded three new Annonaceous acetogenins: muricatetrocin A (= (5S)-3-{(2R)-2-hydroxy-9-{(2R,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxyheptadecyl]furan-2-yl}nonyl}-5-methylfuran-2(5H)-one; 1 ), muricatetrocin B (= (5S)-{(2R)-2-hydroxy-9-{(2S,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxyheptadecyl]furan-2-yl}nonyl}-5-methylfuran-2(5H)-one; 2 ), and gigantetrocin B (= (5S)-3-{(2R)-2-hydroxy-7-{(2S,5S)-tetrahydro-5-[(1S,4R,5R)-1,4,5-trihydroxynonadecyl]furan-2-yl}heptyl}-5-methyl-furan-2(5H)-one; 3 ). Their C-skeletons were deduced by mass spectrometry. Configurations were determined by 1H-NMR of ketal derivatives and 2D-NMR experiments utilizing Mosher esters. A previously described compound, gigantetrocin A (= (5S)-3-{(2R)-2-hydroxy-7-{(2S,5S)-tetrahydro-5-[(1S,4S,5S)-1,4,5-trihydroxynonadecyl]furan-2-yl}heptyl}-5-methylfuran-2-(5H)one; 4 ), was also isolated and is new to this species. Compounds 1–4 were all selectively cytotoxic for the HT-29 human colon-tumor cell line with potencies at least 10 times that of adriamycin.  相似文献   

4.
Separation and Absolute Configuration of the C(8)-Epimeric (app-E)-Neochromes (Trollichromes) and -Dinochromes The C(8′)-epimers of (all-E)-neochrome were separated by HPLC and carefully characterized. The faster eluted isomer, m.p. 197.8–198.3°, is shown to have structure 3 ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-dodehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). To the other isomer, m.p. 195-195.5°, we assign structure 6 , ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-didehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). The already known epimeric dinochromes (= 3-O-acetylneochromes) can now be formulated as 4 and 5 , (‘epimer 1’ and its trimethylsilyl ether) and 7 and 8 , (‘epimer 2’ and its trimethylsilyl ether), respectively.  相似文献   

5.
Examination of the polar components of the green seaweed Caulerpa taxifolia (Vahl ) C. Agardh , which is heavily spreading in the northeastern Mediterranean, led to two families of compounds. The new (2R)-3-O-β-D -galactopyranosyl-1-O-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]-2-O-[(9Z,12Z,15Z)-octadeca-1,12,15-trienoyl]-sn-glycerol ( 2 ) was isolated in low abundance, like the analogues 1 and 3 already known from freshwater cyanobacteria. The acyl positions in 1 – 3 were determined by enzymatic methods and the absolute configuration from the O-galactosylglycerol obtained upon alcaline methanolysis. More abundant were the (4-hydroxyphenyl)- and (3,4-dihydroxyphenyl)pyruvic acid methyl esters, occurring in the enol (Z) forms 13a and 14a accompanied by very minor (E) forms 13b and 14b . The latter became predominant on UV irradiation of 13a or 14a , allowing the determination of the C=C configuration of these isolatable, stable enols from 1H,13C NMR couplings (larger H−C(3)/C(1) coupling constant in the (E) than in the (Z) isomer). Contrary to literature implications, the O-galactosylglycerolipids 1 – 3 lack any cholinergic or histaminergic activity; similarly, enols (= α-keto esters) 13 and 14 or terpenoids of this seaweed were also devoid of such biological activities (see Table).  相似文献   

6.
The Mediterranean alcyonacean Alcyonium (= Parerytkropodium) coralhides (PALLAS, 1766) is shown to contain three novel diterpenes which are of biogenetic significance: the 3,7-cyclized cembranoid Coralloidolide C ( = (+)-(6R*, 7R*, 11S*, 12aS* 3aE)-7,8-epoxy-3,5,6,7,8,9,10,11,12,12a-decahydro-12a-hydroxy-11-isopropenyl-1,4-dimethyl-3-oxocyciopentacydoundecene-8,6-carbolactone; (?)- 3 ), the O-bridged diketonic cembranolide Coralloidolide D (= (+)-(1R*, 2S*, 3R*, 5R*, 12S*, 8Z)-2,5-epoxy-1-hydroxy-12-isopropenyl-5,9-dimethyl-7,10-dioxocyclotetradeca-8-ene-1,3-carbolactone; (+)- 4 ), and the diketonic epoxycembranolide coralloidolide E (=(+)-(1R*, 2R*, 3R*, 12S*, 5Z, 8Z)-1,2-epoxy-12-isopropenyl-5,9-dimethyl-7,10-dioxocyclotetra-deca-5,8-diene-1,3-carbolactone; (+)- 5 ), The latter in pyridine at r. t. undergoes a double bond shift from C(4) = C(5) to C(4) = C(18) to give the isomer (?)- 7 . Structural assignments are mainly based on ID and 2D NMR and MS spectral data. Either corailoidolide A ((?)- 1 ) or the hypothetic unsaturated 1,4-diketone 9 can be envisaged as the precursors of all coralloidolides.  相似文献   

7.
Synthesis of N-Methyl- and N,N-Dimethylmerucathine and of N-Methyl- and N,N--Dimethylpseudomerucathine Starting from L -Alanine Starting form L -alanine, N-methylmerucathine (= (3R,4S)-4-(methylamino)1-phenyl-1-penten-3-ol; (3R,4S,)- 6 ), N,N-dimethylmerucathine (= (3R,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3R,4S)- 9 ), N-methylpseudomerucathine (= (3S,4S)-4-(methylamino)-1-phenyl-1-penten-3-01; (3S,4S)-6), and N,N-dimethylpseudomerucathine (= (3S,4S)-4-(dimethylamino)-1-phenyl-1-penten-3-ol; (3S,4S)- 9 ) were synthesized. The four compounds were analyzed by HPLC and compared with a natural khat extract.  相似文献   

8.
Further investigation of global extracts from cultures of the marine deuteromycete Dendryphiella salina leads to the isolation of three novel trinor-eremophilanes esterified by branched C9-carboxylic acids, dendryphiellin B (= (+)-(1R*,2S*,7R*,8aR*)-1,2,6,7,8,8a-hexahydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2-yl (6R*, 2E, 4E)-6-hydroxy-6-methylocta-2,4-dienoate; (+)- 2 ), dendryphiellin C (=(+)-(1R*, 2S*, 7R*, 8aR*)-1,2,6,7,8,8a-hexa-hydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2-yl (6S, 2E, 4E)-6-methylocta-2,4-dienoate; (+)- 3 )), and dendryphiellin D (=(+)-(1R*, 2S*, 7R*, 8aR*)-1,2,6,7(8,8a-hexahydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2-yl (6R*,2E,4E)-6-(hydroxymethyl)octa-2,4-dienoate; (+)- 4 ). An intact eremophilane, dendryphiellin E ( 5 ), and its ethanolysis product dendryphiellin F whose absolute configuration is represented by structural formula (+)- 6 are also isolated from the above extracts. Dendryphiellin E exists as an open form 5a in equilibrium with a closed form 5b . A similar equilibrium exists between the open form 8a and the closed form 8b of a non-esterified eremophilane, dendryphiellin G ( 8 ), which is isolated too from the above extracts and proves structurally related to the cyclic portion of 5 . Finally, the free, branched C9-carboxylic acids dendryphiellic acid A ((+)- 9 ) and B ((+)- 10 ) which correspond to side chains of the above esterified terpenes are also isolated from the above extracts.  相似文献   

9.
Cucurbitaxanthin A (= (3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β- carotene-5,3′-diol; 5 ), cucurbitaxanthin B (= (3S,5R,6R,3′S,5′R,6′S)-3,6,5′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 6 ), the epimeric cucurbitachromes 1 and 2 (= (3S,5R,6R,3′S,5′R,8′S)- and (3S,5R,6R,3′S,5′R,8′R)-3,6,5′, 8′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol, resp.; 9/10 ), cycloviolaxanthin (= (3S,5R,6R,3′S,5′R,6′R)-3,6,3′, 6′-diepoxy-5,6,5′,6′-tetrahydro-β,κs-carotene-5,5′-diol; 8 ), and capsanthin 3,6-epoxide (= (3S,5R,6R,3′S,5′R)-3,6-epoxy-5,6-dihydro ?5,3′-dihydroxy-β,κ-caroten-6′-one; 7 ) were isolated from red spice paprika (Capsicum annuum var. longum) and characterized by their 1H- and 13C-NMR, mass, and CD spectra.  相似文献   

10.
Continuing studies of the global extracts from cultures of the marine deuteromycete Dendryphiella salina have led to the isolation of novel compounds that add to the scarce list of marine fungal metabolites. Besides (22E)-ergosta-4.6,8(14),22-tetraen-3-one which, though known from basidiomycetes, was unknown in the sea, they are an unusual glyceryl ester, i.e. glycer-1-yl dendryphiellale A (= (+)-(2R)-2,3-dihydroxyprop-l-yl (6S,2E,4E)6-methylocta-2,4-dienoate; (+)- 1 ), a trinor-eremophilane, i.e. dendryphiellin A1 ( = (+)-(3R*,4E,6E)-7-{[(1R*,2S*,7R*,8aR*)-1,2,6,7,8,8a-hexahydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2yl]oxycarbonyl}-3-methylhepta-4,6-dienoic acid; (+)- 11 ), and two eremophilanes, i.e. dendryphiellin El ( = (+)-(1R*, 2S*, 7S*,8aR*)-1,2,6,7,8,8a-hexahydro-1,8a-dimethyl-7-(1-methylethenyl)-6-oxonaphthalen-2-yl(6S,2E,4E)-6-methyl-octa-2,4-dienoate; (+)- 13 ) and dendryphiellin E2 ( = (+)-(1R*, 2S*, 8aR*)-1,2,6,7,8,8a-hexahydro-7-isopropyl-idene-1,8a-dimethyl-6-oxonaphthalen-2-yl (6S,2E,4E)-6-Methylocta-2,4-dienoate; (+)- 14 ). Absolute configurations have been established for (+)- 1 via total synthesis and for the acid portion of (+)- 13 and (+)- 14 via transesterification in NaOMe/MeOH which gave in both cases melhyl dendryphiellate A ((+)- 16 ) of known configuration and the free alcoholic moiety of (+)- 14 , i.e. (+)- 17 .  相似文献   

11.
Synthesis of Enantiomerically Pure Apoviolaxanthinoic Acids, Apoviolaxanthinols, and Apoviolaxanthinals (Including Persicaxanthin, Sinensiaxanthin, and β-Citraurin Epoxide) and of their Furanoid Rearrangement Products Starting from (1′S,2′R,4′S,2E,4E)-5-(1′,2′-epoxy-4′-hydroxy-2′,6′,6′-trimethylcyclohexy1)-3-methy1-2,4-pentadienal ( 3 ), a recently described synthon [6], a full range of C20-, C25-, C27-, and C30-polyenic acids, alcohols, and aldehydes and their (8R)- and (8S)-diastereoisomeric furanoid rearrangement products was prepared. The synthetic C25-alcohols proved to be identical with persicaxanthin (= 12′-apoviolaxanthin-12′-ol) and perisicachromes (= 12′-apoauroxanthin-12′-ols) and the C27-alcohols analogously with sinensiaxanthin and sinensiachromes. A correlation between the sign of the Cotton effects in the CD spectra of 5,6-and 5,8-epoxides and their configuration at C(6) and C(8), respectively, was established.  相似文献   

12.
Butanolic extracts of the Mediterranean sponge Aplysina (= Verongia) cavernicola have given, by reverse-phase HPLC, the antibacterial quinols (±)-3-bromoverongiaquinol (= (±)-3-bromo-1-hydroxy-4-oxo-2,5-cyclohexadine-1-acetamide; 1d) and (±)-3-bromo-5-chloroverongiaquinol (= (±)-3-bromo-5-chloro-1-hydroxy-4-oxo-2,5-cyclohexadine-1-acetamide; 1c ) besides the products of their formal cyclization 5-chlorohexadiene-1-acetamide; 1c ) besides the products of their formal cyclization 5-chlorocavernicolin (= 5-cloro-3,3a,7,7aβ-tetrahydro-3aβ-hydroxy-2,6(1H)-indoledione; 6) , the C(7)-epimerizing 7β-bromo-5-chlorocavernicolin (=7 β-bromo-5-chloro-3,3a,7,7aβ-tetrahydro-3aβ-hydroxy-2,6(1H)-indoledione; 4a and 7α-bromo-5-chlorocavernicolin (4b) , and the C(7)-epimerizing 5-bromo-7β-chlorocavernicolin ( = 5-bromo-7β-chloro-3,3a,7,7aβ-tetrahydro-3aβ-hydroxy-2,6(1H)-indoledione; 5a) and 5-bromo-7α-chlorocavernicolin (5b) . The latter four were isolated as mixtures of C(7)-epimerizing monoacetates 4a′/4b′ and 5a′/5b′. Both 1 and 1c proved to be racemic from NMR examination of their esterification products with (–)-methyl-oxyacetic acid, whilst 6 had a ca. 6% enantiomeric purity as shown by a 1H-NMR study of its monoacetate 6′ in the presence of a chiral shift reagent. These chiroptical data of the first chiral quinols from the Verongida and of 6 suggest phenol oxidative routes from tyrosine precursors for their formation. In view of their bioactivities, 1d and 1c have been synthesized from (p-hydroxyphenyl)acetic acid byt phenol oxidative routes.  相似文献   

13.
Epoxidation of Cucurbitaxanthin A: Preparation of Cucurbitaxanthin B and of Its 5′,6′-Epimer Cucurbitaxanthin A (= (3S,5R,6R,3′S)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol; 1 ) isolated from red pepper (Capsicum annuum var. longum nigrum) was trimethylsiylated and then epoxidized with monoperphthalic acid. After deprotection and chromatographic separation, cucurbitaxanthin B (= (3S,5R,6R, 3′S,5′R,6′S)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 2 ) and 5′,6′-diepicucurbitaxanthin B (= (3S,5R,6R, 3′S,5′S,6′R)-3,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-5,3′-diol; 5 ) were obtained and carefully characterized. They show mirror-like CD spectra and, therefore, emphasize the importance of the torsion angle of C(6)–C(7) on the electronic interaction between the polyene chain and the chiral end group.  相似文献   

14.
Contribution to the Analytical Separation and the Synthesis of 3-Hydroxy-4-oxocarotenoids (3RS,3′RS)-Astaxanthin (= 3,3′-dihydroxy-β,β-carotene-4,4′-dione, 1:1-mixture of racemate and meso-form; 1 ) can be separated into its optical isomers (3S,3′S)- 1a , (3R,3′R)- 1b and meso-(3R,3′S)- 1c via the corresponding diastereomeric di-(?)-camphanates. Some aspects of the configurational stability of astaxanthin are discussed. - HPLC. analysis of the (?)-camphanates of 3-hydroxy-4-oxocarotenoids provides, in suitable cases and supported by spectroscopic data, an analytical method for the simultaneous determination of constitution and chirality.  相似文献   

15.
Abstract

Germicidin N (3-ethyl-4-hydroxy-6-[(1S, 2?R)?2-hydroxy-1-methylpropyl]-2H-pyran-2-one, 1), a new α-pyrone from the extracts of a Streptomyces sp. derived from marine algae, has been synthesized for the first time as four possible diastereomers from chiral β-hydroxyester ((S)?6 and (R)?9) through the stereoselective alkylation, Claisen condensation followed by cyclization in a straightforward manner.  相似文献   

16.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. I. Modification of the Kienzle-Mayer-Synthesis of (3S, 3′S)-Astaxanthin An efficient synthesis of (3S, 3′S)-astaxanthin ( 1a ) in high yield and optical purity starting from (4R, 6R)-4-hydroxy-2,2,6-trimethylcyclohexanone ( 4 ) is reported. The absolute configuration of 1a , previously derived from ORD. data, has been confirmed by X-ray analysis of 5 , a derivative of 6-oxo-isophorone ( 2 ). The key features of the improved synthesis are the two-step conversion of 4 to the key intermediate (4S)-2,6,6-trimethyl-4-hydroxy-2-cyclohexen-1-one ( 14 ), a new method for the partial reduction of the sterically hindered triple bond of (S)-6-hydroxy-3-(5-hydroxy-3-methyl-3-penten-1-ynyl)-2,4,4-trimethyl-2-cyclohexen-1-one ( 32 ), and Wittig olefination of the dialdehyde 1,6-dimethyl-1,3,5-octatrienedial ( 38 ) using phosphonium salt 37 with a free hydroxyl group.  相似文献   

17.
(?)-(S)-2-Hydroxy-β-ionone ( 33 ), (+)-(2 S, 6 S)-2-hydroxy-α-ionone ( 34 ), and their acetates 35 and 36 have been synthesized from (+)-(S)-6-methylbicyclo [4.3.0]-non-1-ene-3, 7-dione ( 3 ). The key intermediate (+)-(1 R, 3 S, 6 S)-2, 2, 6-trimethyl-7-oxobicyclo [4.3.0]non-3-yl acetate ( 7 ) was correlated with a degradation product of the pentacyclic triterpene ursolic acid ( 16 ). Compound 33 was also synthesized by an alternative route starting from (?)-trans-verbenol ( 42 ).  相似文献   

18.
The novel metabolite dendryphiellin A ( = (+)-(1R,2S,8aR)- 1,2,6,7,8,8a-hexahydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2-yl (6R*, 2E,4E)-8-hydroxy-6-methylocta-2,4-dienoate; (+)- 1 ) is isolated from cultures of the marine deuteromycete Dendryphiella salina. There is no precedent in fungi for trinor-eremophilanes or for branched C9 carboxylic acids, the two classes of compounds constituting (+)-1. The structure is secured by NMR spectroscopy and hydrolysis of (+)-1 to give the side-chain moiety ((6R*,2E,4E)-8-hydroxy-6-methylocta-2,4-dienoic acid ( 2 )) intact, whilst the trinor-ermophilane moiety is decomposed. The absolute configuration at the trinor-eremophilane moiety is established from exciton coupling between the dienone and the diene-ester functions.  相似文献   

19.
《Tetrahedron: Asymmetry》1998,9(1):151-155
A highly efficient stereoselective synthesis of (3S,4S)-6,7-dimethoxy-4-hydroxy-3-phenyl-1,2,3,4-tetrahydroisoquinoline 8 (e.e.=96%) starting from enantiomerically pure imine 3 is reported.  相似文献   

20.
The Diels-Alder adducts of maleic anhydride to furfuryl esters were reduced into 7-oxabicyclo[2.2.1]hept-5-ene-1,2-exo,3-exo-trimethanol (±)- 15 and enantiomerically pure (−)- 15 (Scheme 1). The tripivalate of (±)- 15 was converted into (1RS,2RS,3RS,4RS,5SR,6SR)-1,5,6-tris(hydroxymethyl)cyclohexane-1,2,3,4-tetrol ((±)- 23 ; Scheme 2). Reaction of BBr3 with the triacetate (±)- 30 of (±)- 15 gave (1RS,2RS,5RS,6RS)-5-bromo-6-hydroxycyclohex-3-ene-1,2,3-trimethyl triacetate ((±)- 31 ) at −78°, and (1RS,2RS,5SR,8SR)-2-endo-hydroxy-6-oxabicylo[3.2.1]oct-3-ene-5,8-dimethyl diacetate ((±)- 32 ) at 0° (Scheme 3). Single-crystal X-ray diffraction of (1RS,2RS,5SR,8SR)-2-acetoxy-6-oxabicyclo[3.2.1]oct-3-ene-5,8-dimethyl diacetate ((±)- 33 ) was carried out. Displacement of bromide (+)- 31 (derived from (−)- 15 ) with azide anion gave (+)- 38 which was transformed into (+)-(1R,2R,5S,6S)-5-amino-6-hydroxycyclohex-3-ene-1,2,3-trimethanol ((+)- 40 ) (Scheme 4). Reaction of (±)- 31 with BBr3 at 0°, followed by azide disubstitution led to (1RS,2RS,5SR,6SR)-5-amino-3-(aminomethyl)-6-hydroxycyclohex-3-ene-1,2-dimethanol ((±)- 45 ). Dihydroxylation of (±)- 38 and further transformations gave (1RS,2RS,3SR,4RS,5SR,6RS)-5-amino-1,4,6-trihydroxycyclohexane-1,2,3-trimethanol ((±)- 49 ) and (1RS,2RS,3SR,4RS,5SR,6RS)-2,3-dihydroxy-7-oxabicyclo[4.1.0]heptane-2,3,4-trimethanol ((±)- 55 ) (Schemes 5 and 6). Expoxidation of the 4-nitrobenzoate (±)- 61 of (±)- 38 allowed the preparation of (1RS,2RS,3SR,4RS,5RS)-5-amino-1,4-dihydroxycyclohexane-1,2,3-trimethanol ((±)- 65 ) and of (1RS,2RS,3SR,4RS,5SR,6RS)-5-amino-4-hydroxy-7-oxabicyclo[4.1.0]heptane-1,2,3-trimethanol ((±)- 67 ) (Scheme 7). The new unprotected polyols and aminopolyols were tested for their inhibitory activity toward commercially available glycohydrolases. At 1 mM concentration, 34, 30, and 31% inhibition of β-galactosidase from bovine liver was observed for (+)- 40 , (±)- 65 , and (±)- 67 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号