首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound of 3-p-methylphenyl-4-amino-1, 2, 4-triazole-5-thione was synthesized and characterized by elemental analysis, IR, electronic spectra, and X-ray single crystal diffraction. Quantum chemical calculations of the structure, natural bond orbital, and thermodynamic functions of the title compound were performed by using B3LYP/6-311G** and HF-6-311G** methods. Both the methods can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, and B3LYP/6-311G** method is superior to HF/6-311G** method to predict the vibrational frequencies. Electronic absorption spectra calculated by B3LYP/6-311G** method have some red shifts compared with the experimental ones and natural bond orbitals analyses indicate that the two absorption bands are mainly derived from the contribution of n → π* and π → π* transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C 0 p,m , S 0 m , H 0 m , and temperatures.  相似文献   

2.
A systematic study on the structural characteristics of the 2-pyranone ring containing molecules with bromine, nitrile, and amide substituents at the C-3 position in the ring is conducted in the electronic ground (S 0) state by DFT calculations using the B3LYP/6-311++G** method. The geometrical structure of the bromine substituted compound, which shows potent hepatoprotective activity, is studied both in the ground (S 0) and first excited singlet (S 1) states using RHF/6-311++G** and CIS/6-311++G** methods respectively. The molecules are found to exist in two isomeric forms gauche and trans that have the enthalpy difference of less than 3.32 kcal/mol; the latter is the preferred orientation in the gaseous phase. The S 1 state is a 1(π,π*) state that arises π-electron transfer from the region of a double bond in the pyranone ring to the region of the internuclear bond connecting the 2-pyranone and benzene rings. A complete vibrational analysis is conducted for the 3-bromo-6-(4-chlorophenyl)-4-thiomethyl-2H-pyran-2-one molecule based on the experimental infrared spectra in the 50–4000 cm−1 region and DFT/6- 311++G** computations of vibrational frequencies for the gauche and trans isomeric forms. Spectral assignments based on the potential energy distribution along the internal coordinates confirm the nonplanar structure of the molecule.  相似文献   

3.
The nature of the tetrahedral H42+ stationary point (minimum or triply degenerate saddle) depends remarkably upon the theoretical level employed. Harmonic vibrational analyses with, e.g., the 6-31G** (and 6-31 + +G**) and Dunning's [4s2p1d;2s1p] [D95(d,p)] basis sets using the standard p exponent suggest (erroneously) that the Td geometry is a minimum at both the HF and MP2 levels. This is not the case at definitive higher levels. The C3H42+ structure with an apical H is another example of the failure of the calculations with the 6-31G**, 6-311G**, and D95(d,p) basis sets. Even at MP2/6-31G** and MP2/ cc-pVDZ levels, the C3v structure has no negative eigenvalues of the Hessian. Actually, this form is a second-order saddle point as shown by the MP2/6-31G** calculation with the optimized exponent. The D4h methane dication structure is also an example of the misleading performance of the 6-31G** basis set. In all these cases, energy-optimized hydrogen p exponents give the correct results, i.e., those found with more extended treatments. Optimized values of the hydrogen polarization function exponents eliminate these defects in 6-31G** calculations. Species with higher coordinate hydrogens may also be calculated reliably by using more than one set of p functions on hydrogen [e.g., the 6-31G(d,2p) basis set]. Not all cases are critical. A survey of examples, also including some boron compounds, provides calibration. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A free-catalyst microwave-assisted cyanation of brominated Tröger's base derivatives ( 2a - f ) is reported. The procedure is simple, efficient, and clean affording the nitrile compounds ( 3a - e, I ) in very good yields. Complete assignment of 1H and 13C chemical shifts of 2a - f, I and 3a - d, I was achieved using gradient selected 1D nuclear magnetic resonance (NMR) techniques (1D zTOCSY, PSYCHE, DPFGSE NOE, and DEPT), homonuclear 2D NMR techniques (gCOSY and zTOCSY), and heteronuclear 2D NMR techniques (gHSQCAD/or pure-shift gHSQCAD, gHMBCAD, bsHSQCNOESY, and gHSQCAD-TOCSY) with adiabatic pulses. Determination of the long-range proton–proton coupling constants nJHH (n = 4, 5, 6) was accomplished by simultaneous irradiation of two protons at appropriate power levels. In turn, determined coupling constants were tested by an iterative simulation program by calculating the 1H NMR spectrum and comparing it to the experimental spectrum. The excitation-sculptured indirect-detection experiment (EXSIDE) and 1H-15N CIGARAD-HMBC (constant time inverse-detection gradient accordion rescaled heteronuclear multiple bond correlation) were applied for determination of long-range carbon–proton coupling constants nJCH (n = 2, 3, and 4) and for assignment of 15N chemical shift at natural abundance, respectively. DFT/B3LYP optimization studies were performed in order to determine the geometry of 2c using 6-31G(d,p), 6-311G(d,p), and 6–311 + G(d,p) basis sets. For calculation of 1H and 13C chemical shifts, nJHH (n = 2, 3, 4, 5, and 6), and nJCH (n = 1, 2, 3, and 4) coupling constants, the GIAO method was employed at the B3LYP/6-31G(d,p), B3LYP/6-31+G(d,p), B3LYP/6-311+G(d,p), B3LYP/6-311++G(2d,2p), B3LYP/cc-pVTZ), and B3LYP/aug-cc-pVTZ) levels of theory. For the first time, a stereochemical dependence magnitude of the long-range nJHH (n = 4, 5, and 6) and nJCH (n = 1, 2, 3, 4, and 5) have been found in bromo-substituted analogues of Tröger's bases.  相似文献   

5.
The laser-excited Raman spectra of liquid CH3SiClnBr3?n (n = 0, 1, 2) were studied. Quantumchemical calculations of these substances with geometry optimization were performed to determine their harmonic force fields and vibrational frequencies. The calculations were made using the HF/6-31G* and HF/6-311++G** approximations and density functional theory at the B3LYP/6-31G* and B3LYP/6-311++G** levels. An interpretation of the spectra was suggested and the calculated force fields were discussed in comparison with the data on related compounds.  相似文献   

6.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

7.
The geometries of acyclic and three-membered ring (nitroxide) H4C2NO radicals in their ground 2Π electronic states have been optimized completely at ab initio UHF and ROHF theoretical levels with the STO-3G and the 6-31G** basis sets. The optimizations favour the cyclic nitroxide structure energetically. However ΔE(acyclic - cyclic) at the UHF and ROHF/6-31G** levels are only 3.2 and 1.9 kcal mol-1, respectively. Incomplete MP2/6-311G** optimizations support these results. The zero-point energy computed at the ROHF/6-31G** level for the nitroxide radical is 2.5 kcal mol-1 higher than that for the acyclic structure, thus reversing the relative energies by 0.6 kcal mol-1. The energies of the two radical structures, relative to the sum of those for ethylene and NO, are very close to literature values of the activation energies for the thermal, NO catalyzed geometrical isomerizations of olefins. Thus cyclic nitroxide intermediates may play a role not only in the Hg 6(3P1) photosensitized, but also in the thermal, NO-catalyzed geometric isomerizations of olefins. Paper dedicated to Professor Otto P. Strausz; presented in part at the 75th Canadian Chemical Congress and Exhibition, Edmonton, May 31 – June 4, 1992.  相似文献   

8.
In order to elucidate the enthalpic stabilization of a 2-methyl-1,4-butanediol system (2M14BD) and a 3-chloro-1,2-propanediol (3C12PDO) system by mixing of each (R)- and (S)-enantiomers, three-body interaction energies are obtained by PW91/6-311G** and MP2/6-311G** level calculations. The differences between homochiral interactions and heterochiral interactions in a 3C12PDO system are found. On the other hand, in 2M14BD systems, very slight differences can be observed between the three-body interaction energies of the three ternary systems. Further, the relationship between excess enthalpies and chiral interactions is discussed.  相似文献   

9.
The conformational stability and the C–O and O–H internal rotations in oxiranemethanol were investigated at the DFT-B3LYP/6-311G**, MP2/6-311G** and MP4(SDQ)/6-311G** levels of theory. Three minima were predicted in the CCOH potential energy scans of the molecule to have relative energies of about 2 kcal/mol or less and all were calculated to have real frequencies upon full optimization of structural parameters at the DFT and the MP2 levels of calculations. The Cg1 (H bond inner) conformation was predicted to be the lowest energy conformation for oxiranemethanol in excellent agreement with an earlier microwave study. The equilibrium mixture was calculated from Gibb's free-energy changes to be about 79% Cg1, 17% G1g and 3% Gg1 at the B3LYP/6-311G** level and about 87% Cg1, 11% G1g and 2% Gg1 at the MP2/6-311G** level for oxiranemethanol at 298.15 K. No conclusive evidence was obtained for the presence of high-energy form in the liquid phase of oxiranemethanol. The vibrational frequencies of oxiranemethanol in its three stable forms were computed at the B3LYP level and complete vibrational assignments were made for the lowest energy Cg1 form on basis of calculated and experimental data of the molecule.  相似文献   

10.
Using a recently proposed orbital deletion procedure and the block-localized wavefunction method, the rotational barriers in H2BNH2 and H2BPH2 are analyzed in terms of conjugation, hyperconjugation, steric effect and pyramidalization. With the zero-point energy corrections, the π-binding strengths in the planar H2BNH2 and H2BPH2 are both around 20 kcal/mol at the HF level using the 6-311+G** basis set. With the deactivation of the π atomic orbitals on the boron atom and the evolution from a planar structure to a 90°-twisted structure, the steric repulsion between the B‐H and the N‐H or P‐H is relieved and moreover, the negative hyperconjugation from the lone electron pair or pairs on the nitrogen or phosphorus atoms to the antibonding orbital χ* B H 2 of the BH2 group stabilizes the twisted structure by 7.4(8.8) or 4.0(5.0) kcal/mol at the HF/6-31G*(6-311+G**) level. However, the repulsive interaction between the lone pair(s) and the two BH σ bonds is so prominent that the overall steric effect contributes 20.3(22.9) and 19.3(19.8) kcal/mol to the rotational barriers in H2BNH2 and H2BPH2 with the 6-31G*(6-311+G**) basis set. The present techniques and analyses may also give some clues to justify the parameterization in the empirical molecular mechanics methods. Received: 17 April 1998 / Accepted: 17 September 1998 / Published online: 1 February 1999  相似文献   

11.
Calculation was carried out of chemical shifts in 13C NMR spectra for a series of fluoromethanes CH n F4?n (n = 0–4) by the methods of the electron density functional theory GIAO-DFT taking in consideration the solvent effect in the framework of the polarizable continuum model Tomasi IEF-PCM. The best results were obtained at the use of Keal-Tozer KT3 functional combined with Pople standard basis sets 6-311G(d,p) and 6-311++G(d,p), and also with Jensen special set pcS-2 containing tight p-functions. The optimum reference in the calculation of chemical shifts in 13C NMR spectra for the fluoromethanes series is TMS.  相似文献   

12.
The electronic and molecular structure of planar (cyclic and linear) tetra- and hexaatomic clusters (XY) n (XY = CC, BN, BeO, LiF; n = 2, 3) was studied using the ab initio CCD(full)/6-311+G** method and density functional approach (B3LYP/6-311+G**). The stability of cyclic clusters C6, B3N3, and Be3O3 with D3h symmetry is mainly determined by the aromaticity of their -electron systems.  相似文献   

13.
The temperature dependence of the 1 H NMR resonance of the C‐4 olefinic proton in vinylcyclopropane was investigated through a combination of ab initio calculations and Boltzmann statistics. A torsional energy profile as a function of the 〈?〉 dihedral angle was obtained using HF methodology with a 6–311G** basis set, while the corresponding 1 H chemical shift profiles for the C‐4 proton were computed using the GIAO approach and either HF, DFT (B3LYP) or MP2 methods at the 6–311G** level of theory. Chemical shifts at different temperatures calculated as canonical ensemble averages in which the different ab initio 1 H chemical shift profiles and a Boltzmann factor defined by the HF/ 6–311G** energy function are employed reproduce remarkably well the temperature dependence observed experimentally. Attempts to perform a similar study using only the GIAO‐MP2 1 H chemical shift profile and 〈?〉 dihedral angle trajectories obtained from molecular dynamics simulations at different temperatures failed to reproduce the experimental trends. This shortcoming was attributed to the inability of the force fields employed, Tripos 6.0 and MMFF94, to reproduce properly the three‐well torsional potential of vinylcyclopropane. The application of both methodologies to the calculation of population‐dependent chemical shifts in other systems is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The potential energy surface of HCP converting to HPC in its ground electronic state has been investigated with ab initio methods at levels up to MP2/6-311G**//MP4/6-311G** as well as TZV + + ** CASSCF. All geometries are fully optimized and compare favorably to previous theoretical and experimental values. The HCP molecule is predicted to be 85.4 kcal/mol lower in energy than its linear isomer at the-MP2/6-31G*//MP2/6-31G* level. The energy barrier for hydrogen rearrangement is found to be merely 2.3 kcal from the HPC end. CASSCF studies were initiated to clarify the low barrier and lent support to a flat surface as HPC converts to stable, linear HCP at the TZV + + ** level. CASSCF also predicts that HPC is unstable with respect to bending. Harmonic vibrational frequencies for HCP results in 5% accuracy or better. A bent triplet is found to be the lowest excited state using the CASSCF method. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Keto‐enol tautomerism in mono‐ and dithio‐substituted analogs of tropolone was investigated using electronic structure computations. Seven structural isomers of C7H6OS and four of C7H6S2 were optimized fully in gas phase at HF and B3LYP theoretical levels in combination with the 6‐311++g** basis set, as well as with the CBS‐QB3 and G3 methods. To examine the effects of an aqueous solvent on tautomeric equilibrium constants, each species was optimized in water using the self‐consistent reaction field polarizable continuum model at HF/6‐311++g** and B3LYP/6‐311++g** model chemistries. In both phases it was found that the enol forms were significantly more stable with respect to electronic energy and Gibbs free energy compared to the keto isomers, and outnumbered the keto species by several orders of magnitude. This was understood on the basis of elementary Hückel theory and the 4n + 2 rule, and supported by nucleus independent chemical shifts computations of NMR chemical shifts in these seven membered cyclic systems. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green’s function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.  相似文献   

17.
The stability of hydrogen-bonded complexes, DMF–H n CCl4−n (n = 1–3), has been investigated by several theoretical methods including the MP2 level of ab initio theory at various basis sets from 6-31+G* to 6-311++G**. Two stable configurations (respectively a and b) were obtained for each complex with no imaginary frequencies. The minimum energy structure of these complexes has also been analyzed by means of the atoms in molecule theory at MP2/6-311++G** level. It is found that C–H···O hydrogen bonding exists in these systems and that the intensity of HB interaction gradually increases with successive chlorination. Computed results indicate that these complexes automatically assemble into different stable configurations. For the complexes under consideration, their stabilities can be mainly ascribed to the intermolecular HB interaction. The present work is helpful to clearly understand the interaction mechanism of these complexes in theory.  相似文献   

18.
In gas phase, the hydrations of pentafulvenone to generate three types of cyclopentadienyl carboxylic acids are studied theoretically at the MP2/6-311+G**//B3LYP/6-311+G** level. A water molecule attacking the C=O double bond of pentafulvenone can yield cyclopentadienyl carboxylic acids via the formation of fulvenediols, and attacking the C=C double bond of pentafulvenone can directly yield cyclopentadienyl carboxylic acid. The barriers of rate-determining transition states are 42.2 and 30.4 kcal mol−1, respectively. The barriers of rate-determining transition states for two water molecules system are 20.2 and 19.6 kcal mol−1, respectively. The products can isomerize to each other. In aqueous solvent, the hydrations of pentafulvenone are investigated using PCM-UAHF model at the MP2 (PCM)/6-311+G**// B3LYP (PCM)/6-311+G** and MP2 (PCM)/6-311+G**// B3LYP/6-311+G** levels. The barriers of all rate-determining transition states are decreased. The added water molecule acts as catalyst in both gas phase and aqueous solvent. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We observed the microwave spectrum of ethyl isovalerate by molecular beam Fourier transform microwave spectroscopy. The rotational and centrifugal distortion constants of the most abundant conformer were determined. Its structure was investigated by comparison of the experimental rotational constants with those obtained by ab initio methods. In a first step, the rotational constants of various conformers were calculated at the MP2/6-311++G** level of theory. Surprisingly, no agreement with the experimental results was found. Therefore, we concluded that in the case of ethyl isovalerate more advanced quantum chemical methods are required to obtain a reliable molecular geometry. Ab initio calculations carried out at MP3/6-311++G**, MP4/6-311++G**, and CCSD/6-311++G** levels and also density functional theory calculations using the B3LYP/6-311++G** method gave similar results for the rotational constants, but they were clearly distinct from those obtained at the MP2/6-311++G** level. With use of these more advanced methods, the rotational constants of the lowest energy conformer were in good agreement with those obtained from the microwave spectrum.  相似文献   

20.
Using a 6-311G** basis set with estimation of correlation energy at the MP2 level, structural and energetic data for 40 molecular species containing magnesium have been calculated. For about half the species studied, further energetic data were obtained using Pople's G2 method. Enthalpy changes at 298.15 K were obtained for isogyric reactions and standard enthalpies of formation were derived from these. Comparison of the standard enthalpies of formation with the sparse literature data suggests the MP2/6-311G** standard enthalpies of formation are accurate to ± 15 kJ mol?1 and the corresponding G2 enthalpies accurate to ± 10 kJ mol?1. The calculated ΔH [MgN, g] revealed a gross error in the currently accepted value for this function. It is intended that these results will be used to parameterize the semiempirical molecular orbital package, MOPAC, for the element magnesium. © John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号