首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acylation of 4-alkoxycarbonyl-3-amino-6-hydroxy-2H-1-benzopyran-2-one derivatives 3 and 4 gave under mild conditions the O-substituted derivatives 5–10, N,O -disubstituted derivative 11 and N,N-disubstituted derivative 12 . The compound 4 was transformed with benzoyl chloride under more drastic conditions into 13 , a derivative of a new heterocyclic system 2-benzopyrano[3,4-d][1,3]oxazine. The derivatives of 1-benzopyrano-[3,4-d]pyrimidine 19 and 20 were prepared either from 3 and 4 through the corresponding N-heteroarylformamidines 14 and 15 and N-heteroarylformamide oximes 17 and 18 or by cyclization of thiourea derivative 20 .  相似文献   

2.
The 1,4-cycloaddition of sulfene to N,N-disubstituted (E)-4-aminomethylene-3,4-dihydro-1-benzoxepin-5(2H)-ones gave, generally in excellent yield, N,N-disubstituted 4-amino-3,4,5,6-tetrahydro-1,2-oxathiino-[5,6-d)-1-benzoxepin 2,2-dioxides, which are derivatives of the new heterocyclic system 1,2-oxathiino[5,6-d]-1-benzoxepin. This reaction did not occur only with the N,N-diphenylenaminone.  相似文献   

3.
Treatment of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid (X) with acetic anhydride under refluxing conditions afforded 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]-pyrimido[4,5-d]pyrimidin-5-one acetate (IX). The intermediate X was prepared from 4-chloro-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (V). The reaction of V with the sodium salt of 2-amino-3-hydroxypyridine at room temperature gave 4-(2-amino-3-pyridyloxy)-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester (VI). Treatment of VI with a hot aqueous sodium hydroxide solution and subsequent acidification gave X. Involvement of 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecaroboxylic acid ethyl ester (VIII) (Smiles rearrangement product) as an intermediate in the above alkaline hydrolysis reaction of VI to X was demonstrated by the isolation of VIII and its subsequent conversion into X under alkaline hydrolysis conditions. Acetylation of VIII with acetic anhydride in pyridine solution gave 4-[(3-hydroxy-2-pyridyl)amino]-2-phenyl-5-pyrimidinecarboxylic acid ethyl ester acetate (XI), which afforded IX on fusion at 220°. This alternative synthesis of IX from XI supported the structural assignment of IX. Fusion of VI gave 10-hydroxy-2-phenyl-5H-pyrido[1,2-a]pyrimido]4,5-d]pyrimidin-5-one (VII). The latter was also obtained when VIII was fused at 210°. Acetylation of VII with acetic anhydride afforded IX.  相似文献   

4.
Partially hydrogenated pyrido[2,1-b][1,3]oxazine, cyclopenta[d]pyrido[2,1-b][1,3]oxazine and pyrido[1,2-a]-[3,1]benzoxazine ring systems were easily formed in the reaction of 3-hydroxy-2-(2-hydroxy-1,3-dioxo-2-indanyl)-2-alken-1-one derivatives with tosyl chloride and pyridine bases. A facile interconversion between pyridooxazines and the corresponding pyridinium salts was also realized.  相似文献   

5.
The reaction of methyl 2-bromo-6-(trifluoromethyl)-3-pyridinecarboxylate ( 1 ) with methanesulfonamide gave methyl 2-[(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridine-carboxylate ( 2 ). Alkylation of compound 2 with methyl iodide followed by cyclization of the resulting methyl 2-[methyl(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridinecarboxylate ( 3 ) yielded 1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 4 ). The reaction of compound 4 with α,2,4-trichlorotoluene, methyl bromopropionate, methyl iodide, 3-trifluoromethylphenyl isocyanate, phenyl isocyanate and 2,4-dichloro-5-(2-propynyloxy)phenyl isothiocyanate gave, respectively, 4-[(2,4-dichlorophenyl)methoxy]-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazine 2,2-dioxide ( 5 ), methyl 2-[[1-methyl-2,2-dioxido-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4-yl]oxy]propanoate ( 6 ), 1,3,3-trimethyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 7 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 8 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-phenyl-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 9 ) and N-[2,4-dichloro-5-(2-propynyloxy)phenyl]-4-hydroxy-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2] thiazine-3-carboxamide 2,2-dioxide ( 10 ).  相似文献   

6.
Cycloaddition of dichloroketone to N,N-disubstituted (E)-4-aminomethylene-3,4-dihydro-1-benzoxepin-5(2H)-ones gave N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-2H-pyrano[3,2-d]-1-benzoxepin-2-ones II, which are derivatives of the new heterocyclic system 2H-pyrano[3,2-d]-1-benzoxepin. Dehydrochlorination with triethylamine of II afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-2H-pyrano-[3,2-d]-1-benzoxepin-2-ones III in good to moderate yields. In the triethylamine treatment of IIh (NR2 = diphenylamino), 3-chloro-5,6-dihydro-2H-pyrano[3,2-d]-1-benzoxepin-2-one was isolated in low yield near to IIIh, whereas IIc (NR2 = diisopropylamino) gave in low yield 4-diisopropylamino-5,6-dihydro-2H-pyrano(3,2-d)-1-benzoxepin-2-one.  相似文献   

7.
Treatment of (±)-cis-N-(3-methyl-4-piperidyl)-N-phenylpropanamide (2) with styrene oxide (1) yielded a mixture of (±)-cis-N-[1-(2-hydroxy-2-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (3) and (±)-cis-N-[1-(2-hydroxy-1-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (4) . The structure of compound 3 was confirmed by an unambiguous synthesis via (±)-cis-N-[1-(2-oxo-2-phenylethyl)-3-methyl-4-piperidyl]-N-phenylpropanamide (6) . The proton and carbon-13 resonances of compounds 3 and 4 were assigned with the aid of two-dimensional heteronuclear correlation experiments.  相似文献   

8.
The reaction of 2-[(N-acyl, N-alkyl or phenyl)amino]-4H-pyrido[1,2-a]pyrimidin-4-ones 8a-g with the N,N-dimethylformamide/phosphorus oxychloride Vilsmeier reagent 1 (95°, 90 minutes) afforded 1-alkyl or phenyl-2H-dipyrido[1,2-a:2′,3′-d]pyrimidine-2,5(1H)?diones, 3-alkyl substituted or not, 10a-g . The starting compounds 8 were prepared by treating 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones N-alkyl substituted 7a,b or N-phenyl substituted 4 with excess anhydrides (130°, 7 hours) when the 2-(alkylamino) derivatives 7 were used in the reaction, compounds 8 were obtained along with very small amounts of 3-acyl-2-(alkylamino)-4H-pyrido[1,2-a]pyrimidin-4-ones 9 .  相似文献   

9.
3H-benzothieno[3,2-d]pyrimidin-4-one (3) was synthesized by bimolecular cyclising the 3-amino-2-carbethoxybenzothiophene (1) with formamide. The electrophilic substituion of 3 afforded N-methylated lactam derivavtives, the structure of which was assigned by 'H nmr and unequivocal synthesis. The sysnthesis of benzothieno[3,2-d]pyrimidine (7) was achieved by desulphurization of the 3H-benzothieno[3,2-d]-[3,2-d]pyrimisine-4-thione (6) or by oxydation of the 4-hydrazinobenzothieno[3,2-d]primidine (5).  相似文献   

10.
Methyl 2-acetyl-3-{[2-(dimethylamino)-1-(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 4 ) and phenyl-methyl 2-acetyl-3-{[2-(dimethylamino)-1(methoxycarbonyl)ethenyl]amino}prop-2-enoate ( 5 ) were prepared in three steps from the corresponding acetoacetic esters, and used as reagents for the preparation of N3-protected 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 10 – 12 , 5H-thiazolo[3,2-a]pyrimidin-5-one 13 , 4H-pyrido[1,2-a]-pyridin-4-one 19 and 2H-1-benzopyran-2-ones 20 – 23 . Free 3-amino-4H-pyrido[1,2-a]pyrimidin-4-ones 24 – 26 were prepared from 10 – 12 by removal of the 2-(methoxycarbonyl)-3-oxobut-1-enyl or 3-oxo-2-[(phenyl-methoxy)carbonyl]but-1-envl as N-protecting group by various methods.  相似文献   

11.
This paper reports the synthesis of new pyrido[2,3-d]pyrimidin-4-one derivatives as diuretic agents. Starting with 1,2-dihydro-5-nitro-2-oxo-3-pyridinecarboxylic acid 1 , ethyl 2-ethoxy-5-nitro-3-pyridincarboxylate 4 was obtained. Compound 4 reacts with ammonia, methylamine or S-methylpseudothiourea to give the respective 2-amino-5-nitro-3-pyridinecarboxamide derivatives 5 and 6 or 2-methylthio-6-nitro-3H-pyrido[2,3-d]pyrimidin-4-one 8. Treating carboxamide 5 with arylaldehydes and zinc dichloride, new 2-aryl-1,2-dihydro-6-nitro-3H-pyrido[2,3-d]pyrimidin-4-ones 9 were synthetised. These compounds reduced with iron(II) hydroxide gave 6-amino-2-aryl-1,2-dihydro-3H-pyrido[2,3-d]pyrimidin-4-ones 10 as expected.  相似文献   

12.
The annulation of 2-amino-3-hydroxy-, 2-amino-3-carboxy-, and 2-amino-3-methylpyridine with ethyl cyelopenlanone-2-earboxylate led to the 5-hydroxy-, 2 , 5-carboxy-, 3, and 5-methyl-, 4 , derivatives of the 2,3-dihydrocycloperita[d]pyrido[1,2-a]pyrimidin-10(1H) one heterocycle. Alkylation of 2 with α-bromotolue, ne gave the 5-benzyloxy derivative.  相似文献   

13.
The reactions of sulfamides with 4,5-dihydroxyimidazolidin-2-ones were studied at ambient and high pressure. The previously unknown derivatives of 5(3H)-oxotetrahydro-1H-imidazo-[4,5-c][1,2,5]thiadiazole 2,2-dioxide, viz., sulfo analogs of tetrahydroimidazo[4,5-d]imidazole-2,5-(1H,3H) diones (glycolurils), were synthesized. The structures of some of these compounds were established by X-ray diffraction. The high-pressure reactions performed under conditions of solvent phase transitions afforded also N-(1,3-diethyl-5-hydroxy-2-oxoimidazolidin-4-yl)-N,N′-dialkylsulfamides. Among these compounds, a new conglomerate was found. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1711–1719, May, 2008.  相似文献   

14.
The single aberrant product of the reaction between 2-amino-3-methylpyridine ( 2 ) and ethyl benzoylacetate ( 4 ) in diethylbenzene at ca. 180° was 3-benzoyl-2-hydroxy-9-methylpyrido-[1,2-a]pyrimidin-4-one ( 5 ). When administered to naive rats, 5 induced behavioral effects strikingly similar to those manifested by morphine-addicted rats who have been deprived of that analgetic.  相似文献   

15.
Refluxing 3-amino-2-iminonaphtho[1,2-d]thiazole ( 1 ) with diethyl oxalate ( 2a ) in a 2:1 molar ratio in dry pyridine provided 2,2′-binaphtho[1′,2′:4,5]thiazolo[3,2-b][1,2,4]triazole ( 3 ). On the other hand, when 1 was treated with excess amount of 2a in dimethylformamide, it afforded ethyl naphtho[1′,2′:4,5]thiazolo[3,2-b][1,2,4]triazole-2-carboxylate ( 4a ) on heating and ethyl N-(2-iminonaphtho[1,2-d]thiazol-3-yl)oxamate ( 5 ) by stirring at room temperature. Cyclization of 5 upon fusion led to the formation of 3-hydroxy-2H-naphtho-[1′,2′:4,5]thiazolo[3,2-b][1,2,4]triazin-2-one ( 6 ). Compound 6 could also be prepared directly from 1 by refluxing either with 2a neatly, in glacial acetic acid or with oxalic acid ( 2b ) in the same medium. The acid form of 4a might be obtained from 1 and 2b on heating in dimethylformamide, but it was decarboxylated to naphtho-[1′,2′:4,5]thiazolo[3,2-b][1,2,4]triazole ( 4b ) during the reaction.  相似文献   

16.
Naphth[1,2-d]oxazole-5-sulfonic acid ( 1 ) has been prepared by the fusion of 4-amino-3-hydroxynaphthalene-1-sulfonic acid with formamide. Interaction of 1 with a number of arenesulfonyl chlorides, aryloxyacetyl chlorides, 1-naphthyloxyacetyl chloride, and chloroacetyl chloride gave 2-(arylsulfonyl)-, 2-(aryloxyacetyl)-, 2-(1-naphthyloxyacetyl)- and 2-(chloroacetyl)naphth[1,2-d]oxaxole-5-sulfonic acids ( 2, 3, 4 and 5 ), respectively. The corresponding sulfonyl chloride of 2 was condensed with amines giving the expected 2-(arylsulfonyl)-naphth[1,2-d]oxazole-5-sulfonamides ( 6 ). Interaction of 5 with hydrazine gave 2-hydrazinoacetyl and disubstituted hydrazine derivatives 7 and 8 . Condensation of 7 with aromatic aldehydes yielded substituted hydrazonoacetyl derivatives 9 . Two moles of 5 react with one mole of hydroquinone in dry acetone in the presence of anhydrous potassium carbonate and potassium iodide gave 1,4-bis[5-sulfonaphth[1,2-d]oxazol-2-ylcarbonyl-methoxy]benzene ( 10 ).  相似文献   

17.
Several disubstituted pyrazolo[3,4-d]pyrimidine, pyrazolo[1,5-a]pyrimidine and thiazolo[4,5-d]pyrimidine ribonucleosides have been prepared as congeners of uridine and cytidine. Glycosylation of the trimethylsilyl (TMS) derivative of pyrazolo[3,4-d]pyrimidine-4,6(1H,5H,7H)-dione ( 4 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 5 ) in the presence of TMS triflate afforded 7-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo-[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 6 ). Debenzoylation of 6 gave the uridine analog 7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 3 ), identical with 7-ribofuranosyloxoallopurinol reported earlier. Thiation of 6 gave 7 , which on debenzoylation afforded 7-β-D-ribofuranosyl-6-oxopyrazolo[3,4-d]pyrimidine-4(1H,5H)-thione ( 8 ). Ammonolysis of 7 at elevated temperature gave a low yield of the cytidine analog 4-amino-7-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-6(1H)-one ( 11 ). Chlorination of 6 , followed by ammonolysis, furnished an alternate route to 11 . A similar glycosylation of TMS-4 with 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl chloride ( 12 ) gave mainly the N7-glycosylated product 13 , which on debenzylation provided 7-β-D-arabinofuranosylpyrazolo[3,4-d]pyrimidine-4,6(1H,5H)-dione ( 14 ). 4-Amino-7-β-D-arabinofuranosyl-pyrazolo[3,4-d]pyrimidin-6(1H)-one ( 19 ) was prepared from 13 via the C4-pyridinium chloride intermediate 17 . Condensation of the TMS derivatives of 7-hydroxy- ( 20 ) or 7-aminopyrazolo[1,5-a]pyrimidin-5(4H)-one ( 23 ) with 5 in the presence of TMS triflate gave the corresponding blocked nucleosides 21 and 24 , respectively, which on deprotection afforded 7-hydroxy- 22 and 7-amino-4-β-D-ribofuranosylpyrazolo[1,5-a]pyrimidin-5-one ( 25 ), respectively. Similarly, starting either from 2-chloro ( 26 ) or 2-aminothiazolo[4,5-d]pyrimidine-5,7-(4H,6H)-dione ( 29 ), 2-amino-4-β-D-ribofuranosylthiazolo[4,5-d]pyrimidine-5,7(6H)-dione ( 28 ) has been prepared. The structure of 25 was confirmed by single crystal X-ray diffraction studies.  相似文献   

18.
Synthesis of the pyrazolo[3,4-d]pyrimidin-3-one congeners of guanosine, adenosine and inosine is described. Glycosylation of 3-methoxy-6-methylthio-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 13 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose ( 16 ) in the presence of boron trifluoride etherate gave 3-methoxy-6-methylthio-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)-one ( 17 ) which, after successive treatments with 3-chloroperoxybenzoic acid and methanolic ammonia, afforded 6-amino-3-methoxy-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)one ( 18 ). The guanosine analog, 6-amino-1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 21 ), was made by sodium iodide-chlorotrimethylsilane treatment of 6-amino-3-methoxy-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazolo[3,4-d]pyrimidin-4(5H)one ( 19 ), followed by sugar deprotection. Treatment of the adenine analog, 4-amino-1H-pyrazolo[3,4-d]pyrimidin-3(2H)-one ( 11 ), according to the high temperature glycosylation procedure yielded a mixture of N-1 and N-2 ribosyl-attached isomers. Deprotection of the individual isomers afforded 4-amino-3-hydroxy-1-βribofuranosylpyrazolo-[3,4-d]pyrimidine ( 26 ) and 4-amino-2-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-3(7H)-one ( 27 ). The structures of 26 and 27 were established by single crystal X-ray diffraction analysis. The inosine analog, 1-β-D-ribofuranosylpyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 28 ), was synthesized enzymatically by direct ribosylation of 1H-pyrazolo[3,4-d]pyrimidine-3,4(2H,5H)-dione ( 8 ) with ribose-1-phosphate in the presence of purine nucleoside phosphorylase, and also by deamination of 26 with adenosine deaminase.  相似文献   

19.
Guanidine transforms the following: (a) 3-formylchromone into a mixture of 2-amino-5-(2-hydroxybenzoyl)pyrimidine and 2-amino-5H-[1]-benzopyrano[4,3-d]pyrimidine; (b) the diacetate of 3-methylidyne-chromone into 2-amino-5-hydroxy-5H-[1]benzopyrano[4,3-d]pyrimidine; and (c) the oxime of 3-formylchromone into 2-amino-5H-[1]benzopyrano-[4,3-d]pyrimidin-5-one. Thiourea, acetamidine and nitroguanidine can also generate pyrimidines of the same type with 3-formylchromone, the diacetate of 3-methylidynechromone or 3-(1,3-dioxolan)chromone.  相似文献   

20.
Substituted 2-amino-4-aryl-3-cyano-5-oxo-5,6-dihydro-4H-pyrano[2,3-d]pyrido[3",2":4,5]thieno[3,2-b]pyridines were synthesized by the reactions of 4-hydroxy-1H-thieno[2,3-b;4,5-b]dipyridin-2-ones with arylidenemalononitriles or by the three-component reactions of hydroxythienodipyridinones with aldehydes and malononitrile in DMF in the presence of triethylamine. Methods for syntheses of substituted 3-alkoxycarbonyl-6-amino-4-aryl-2-(3-cyanopyridin-2-ylthiomethyl)-4H-pyrans were developed on the basis of the reactions of 4-(3-cyanopyridin-2-ylthio)acetoacetates and arylidenemalononitriles or aldehydes and malononitrile. Ethyl 4-(3-cyanopyridin-2-ylthio)acetoacetate and 4-methoxybenzylidenecyanothioacetamide were used for the synthesis of 6-(pyridin-2-ylthiomethyl)-3-cyanopyridine-2(1H)-thione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号