首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key feature differentiating analytical supercritical fluid extraction (SFE) from conventional liquid extraction is the possibility of varying the solvent strength of a supercritical fluid to achieve selective extractions of specific target compounds, or functional classes of compound, from complex matrices. This can be accomplished by using supercritical fluids other than carbon dioxide, for example, sulfur hexafluoride, nitrous oxide, or sulfur hexafluoride-modified carbon dioxide. The use of these fluids will be demonstrated by the characterization of complex environmental and petroleum matrices by directly coupled SFE – capillary GC. On-line SFE-GC involves the decompression of pressurized extraction fluid directly into the heated, unmodified capillary split injection port of the chromatograph. This paper will also show how, by adjustment of the extraction temperature and pressure, SFE selectivity may be further enhanced.  相似文献   

2.
3.
Capillary supercritical fluid chromatography has been directly coupled with supercritical fluid extraction using modified carbon dioxide. The mixed fluids were prepared with a single pump on-line mixing system. The most important step in the SFE-SFC interface was the elimination of the modifier solvent. This was achieved by use of a coupled trap, 0.1 mm i.d. and 0.53 mm i.d. capillary tubing connected in series, with the collected solutes refocused on the second (0.53 mm i.d.) trap before transfer into the separation column. This enabled complete elimination of various modifier solvents and high efficiency collection of the solutes. The effect of the modifier on trapping efficiency was investigated using methanol, ethanol, dichloromethane, hexane, and toluene at a variety of concentrations. n-Eicosane was, for example, trapped quantitatively by modified carbon dioxide containing up to 13 % (w/w) methanol. The use of the technique has been demonstrated by selective extraction of n-paraffins, fatty acid methyl esters, and alcohols from a silica matrix; the effect of different modifiers on the extraction of a mixture of pesticides from soil has also been investigated.  相似文献   

4.
5.
Analysis of low concentration polymer additives has been a challenging problem. The commonly used methods of analysis involve the initial extraction of polymer additives with solvents, often in a Soxhlet apparatus, followed by liquid, size exclusion, or gas chromatography. This paper describes the on-line super-critical fluid extraction (SFE)-supercritical fluid chromatographic (SFC) determination of different additives from low density polyethylene. Cryogenic collection was used as an interface between SFE and SFC to focus the extraction eluate before transfer to an analytical SFC column for quantitative analysis.  相似文献   

6.
A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative transfer of solutes to the seperation column. The problems caused by impurities in the extraction fluid in on-line SFE-GC are discussed. Simple methods are described for the purification of commercially available carbon dioxide. The trapping efficiency of the PTV injector is studied. Applications of the SFE-PTV-GC system are given for the analysis of polymer anti-degradants, polar compounds, and samples with environmental relevance.  相似文献   

7.
A method has been developed for the quantitative extraction of nitrotoluenes (2,3-dinitrotoluene, 2,4-dinitrotoluene and trinitrotolugene) from water using a BakerbondTM phenyl sorbent. The average solid phase extraction recoveries for spiked standards ranged from 80 to 95 percent for reagent water and 52 to 95 percent from well and surface water in the low ppb and ppt levels. After the nitrotoluenes had been trapped on the solid sorbent they were quantitatively eluted using SFE. Adding toluene to the extraction cell increased the rate of extraction, but did not improve analyte recovery versus unmodified CO2. The extracts were analyzed off-line with GC–ECD using an internal standard. Extraction losses were due to analyte breakthrough, and not from poor SFE recoveries. This demonstrates that supercritical fluid extraction is a suitable elution technique for analytes trapped on solid phase extraction sorbents. Also, a method for the direct on-line coupling of SPE to GC, using SFE, has been developed and evaluated. Supercritical CO2 is ideal for directly coupling SPE to GC, since carbon dioxide is a gas under ambient conditions. One potential problem of on-line SPE–SFE–GC is the presence of residual water trapped on the active sites of the Bakerbond13 phenyl sorbent. This problem was dealt with by using a split interface previously described by Hawthorne. From the results of this study, the relative standard deviation of the on-line SPE–SFE–GC interface was determined to be between 4 and 10 percent. In addition, there was no significant difference in the precision of the method with or without the use of an internal standard. A calibration curve was also constructed (r2 = 0.995) from spiked controls, demonstrating that the method is quantitative.  相似文献   

8.
Improved supercritical fluid extraction of sulphonamides   总被引:4,自引:0,他引:4  
Summary Different ways used for enhancing the yield of sulphonamides leached from solid supports are reported. Supercritical CO2 and methanol-modified CO2 were used as extractants of the target analytes and the impregnation of the solid sample with buffer, derivatization of the analytes and ion-pair formation were assessed. Only the sulphonamide/tetramethyl-ammonium ion-pairs are quantitatively extracted from the solid supports using pure supercritical CO2, while the other modifications and the presence of a cosolvent lead to recoveries lower than 30% for most of the analytes. Individual separation/quantitation of the analytes was performed off-line using a liquid chromatograph.  相似文献   

9.
A polarity test mix consisting of acetophenone, N,N-dimethylaniline, naphthalene, 2-naphthol, and n-tetracosane was spiked onto sand and extracted with carbon dioxide modified with acetonitrile, methanol, or toluene. The extracts were collected in chloroform, hexane, methanol, or a mixed collection solvent consisting of equal parts chloroform-hexane-methanol. The mixed collection solvent which showed excellent recoveries for pure CO2, had the worst recoveries of all the collection solvents with modified CO2. Overall hexane was the best collection solvent studied for these analytes under these extraction conditions.  相似文献   

10.
11.
12.
13.
Important considerations are discussed for analytical SFE method development employing methanol–modified carbon dioxide and solid-phase trapping. The focus of this study was to break the method development procedure into distinct steps so that the origins of low recoveries could be determined conclusively. Sulfonyl urea herbicides were used as probe analytes. Analyte solubility, analyte trapping, analyte trap removal (solid-phase), and extract analysis were all shown to be equally important in achieving quantitative SFE recoveries.  相似文献   

14.
Supercritical fluid extraction was coupled directly with high performance liquid chromatograph. The system was evaluated for direct injection of supercritical CO2 and modified supercritical CO2 at high pressure and temperature onto a HPLC system with varying mobile phase compositions and flow rates. Injection of 9 μL supercritical CO2 onto the HPLC using methanol/water mobile phases from 100% methanol to 80% with a flow of 1.0 mL/min did not adversely affect the baseline of UV detector. However at higher percentages of water, CO2 solubility in the mobile phase decreased and caused baseline interferences on the UV detector. At higher HPLC mobile phase flow rates, supercritical CO2 was injected to higher percentages of water without any effect on the UV baseline. Also, increasing the extraction pressure or modifier concentration did not change the results. Separations of polynuclear aromatic hydrocarbons and linear alkenebenzene sulfonate test mixtures were obtained using on-line SFE/HPLC interfaced system.  相似文献   

15.
16.
Summary A mini extractor of 85 L void volume and a micro extractor of 3–4 L void volume have been coupled directly with a packed column SFC and used under sub- and supercritical conditions. The mini extractor is suitable for holding adsorbates which can be on-line extracted and the extract chromatographed (direct SFE-SFC). The micro extractor can be used for direct sample introduction of liquid and solid materials under SF conditions. Thus any solvent interference with the sample and the chromatographic conditions is excluded. Standard samples of wood tar residue, engine oil, and metal organic compounds have been tested.  相似文献   

17.
Components of hamster feces ranging from low molecular weight fatty acids through the expected range of triglycerides have been eluted in a single SFC run with simultaneous pressure and temperature programming. Temperature programming from 140°C to 240°C was required to provide optimum conditions for separation of the fatty acids and to move the elution region of the sterol esters away from that of the triglycerides. Data from chemical ionization and electron impact mass spectrometry of compounds separated by SFC were used to confirm identities suggested by retention measurements and to provide tentative identities of unknown compounds. SFC with flame ionization detection was used to compare Soxhlet extraction, off-line supercritical fluid extraction (SFE), and on-line SFE of the feces. Although samples obtained by Soxhlet extraction and SFE produced very similar chromatograms, SFE required far less time and consumed much smaller quantities of organic solvent.  相似文献   

18.
The effects of various parameters, i.e. extraction pressure, temperature, time, and modifier on the efficiency of extraction were investigated using an analytical-scale supercritical fluid extraction system. An optimal set of conditions for the extraction and determination by gas chromatography-mass spectrometry of trimethylsilyl derivatives of 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione, nandrolone, and testosterone in nutritional supplements was developed. The optimum amount of creatine supplement was 1 g, while the optimum pressure and temperature were determined to be 35 MPa and 80 °C, respectively. The optimum dynamic extraction time was 45 min. The limit of detection (LOD) of the investigated compounds ranged from 5 to 25 ng · g−1 of supplement, while recoveries ranged from 76.1 to 86.6%. Correspondence: Petra Mikulcikova, Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, nám. Cs. Legií 565, CZ 532 10 Pardubice, Czech Republic  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号