首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Crystal Packing in three Modifications of PPh4[ReO(S4)2] and PPh4[ReS(S4)2] Mixed crystals PPh4[ReS(S4)2]0,63[ReO(S4)2]0,37 were obtained from PPh4Cl, ReCl5 and Na2S4 in acetonitrile. Their crystal structure corresponds to the known structure of this kind of compound (space group P21/n). In a similar reaction with ReBr5 instead of ReCl5, PPh4[ReO(S4)2] was obtained in small yield. Its triclinic crystal structure was determined by X‐ray crystallography (space group P1). It contains cation pairs (PPh4+)2 such as they have been found in many other instances. In contrast, the crystal structures of the mixed crystals and of one known modification of PPh4[ReS(S4)2] have PPh4+ columns similar to compounds crystallizing in the space group P4/n, albeit in a severely distorted manner; their space group P21/n is a subgroup of P4/n with a doubled unit cell. In another modification of PPh4[ReS(S4)2] (space group P21/c) the columns are less distorted, but arranged in a different way.  相似文献   

3.
Synthesis and Crystal Structures of (PPh4)2[In(S4)(S6)Cl] and (PPh4)2[In(S4)Cl3] InCl and PPh4Cl yield (PPh4)2[In2Cl6] in acetonitrile. This reacts with Na2S4 in presence of PPh4Cl, forming (PPh4)2[In(S4)(S6)Cl]. Its crystal structure was determined by X-ray diffraction (R = 0.075, 2 282 observed reflexions). It is isotypic with (PPh4)2[In(S4)(S6)Br] and contains anions with trigonal-bipyramidal coordination of In, Cl occupying an axial position, and the S4 and S6 groups being bonded in a chelate manner. The reaction of (PPh4)2[In2Cl6] and sulfur in acetonitrile yielded (PPh4)2[InCl5] and (PPh4)2[In(S4)Cl3]. The crystal structure analysis of the latter (R = 0.072, 4 080 reflexions) revealed an anion with distorted trigonal-bipyramidal coordination of In, the S4 group occupying one axial and one equatorial position; the S4 group shows positional disorder.  相似文献   

4.
曹怀贞  刘春万  卢嘉锡 《化学学报》1986,44(12):1197-1203
本文采用CNDO/2-SD方法计算了二铁氧还盐及四铁氧还盐的电子结构.与Roussin 红盐及Roussin 黑盐的电子结构比较,相似之处为:在铁局部对称性为四面体的簇合物中, Fe-Fe间相互作用主要由铁的s,p电子的σ贡献产生, 金属d轨道的π相互作用在占有轨道区间同时具有成键和反键贡献, 因而对骨架的形成几乎无贡献. 骨架μ2-S桥含有孤对电子,有形成μ3-S桥的可能, 但以桥硫孤对电子贡献为主的轨道都不是前线轨道. 不同之处在于端基为SH的簇合物骨架电子的非定域性较端基为NO时更强. 二核簇合物Fe与端基SH的成键能力比与NO的小, 因而在自兜反应中容易失去端基SH而形成封闭型结构.  相似文献   

5.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

6.
7.
The role of solvent (and other species) in the formation of networks from tetrakis(thiourea)platinum(II) cations and croconate anions is examined, with crystallisations from DMSO giving rise to a structure containing solvent filled channels.  相似文献   

8.
The reaction of (Me3SiNSN)2S with TeCl4 in CH2Cl2 affords Cl2TeS2N2 (1) and that of (Me3SiNSN)2Se with TeCl4 produces Cl2TeSeSN2 (2) in good yields. The products were characterized by X-ray crystallography, as well as by NMR and vibrational spectroscopy and EI mass spectrometry. The Raman spectra were assigned by utilizing DFT molecular orbital calculations. The pathway of the formation of five-membered Cl2TeESN2 rings by the reactions of (Me3SiNSN)2E with TeCl4 (E = S, Se) is discussed. The reaction of (Me3SiNSN)2Se with [PPh4]2[Pd2X6] yields [PPh4]2[Pd2(mu-Se2N2S)X4] (X = Cl, 4a; Br, 4b), the first examples of complexes of the (Se2N2S)2- ligand. In both cases, this ligand bridges the two palladium centers through the selenium atoms.  相似文献   

9.
10.
11.
刘云清  陈启元  尹周澜  吴道新 《合成化学》2005,13(2):178-179,182
以(NH4)2MoS4,Et4NBr,HSCH2CH2SH为原料合成了新的簇合物——[Et4N]2[Mo2S4(SCH2CH2S)2],其结构经X射线四圆衍射仪,IR。UV及元素分析确证。其晶体属单斜晶系。晶胞参数为:a=1.0304(8)nm,b=1.4158(8)sin。c=1.1417(1)nm,V=1.63801nm^3,z=4。晶体结构经块状矩阵最小二乘法修正后,最终偏离因子R=0.084。  相似文献   

12.
Pale blue, lath‐shaped single crystals of K2NdP2S7 (≡ K4Nd2[PS4]2[P2S6]; monoclinic, P21/n, a = 904.76(8), b = 677.38(6), c = 1988.7(2) pm, β = 97.295(5)°, Z = 2) are obtained by the reaction of Nd, S and P2S5 with an excess of KCl as a flux in evacuated silica tubes at 750 °C (7 d) which should produce Nd[PS4] instead. Beside isolated [PS4]3– tetrahedra, the crystal structure contains discrete ethane‐analogous [P2S6]4– (≡ [S3P–PS3]4–) units in staggered conformation with tetravalent phosphorus cations and a P–P distance of 219 pm. The two crystallographically different potassium cations show coordination numbers of nine and ten in the shape of distorted mono‐ and bicapped square antiprisms. Finally, the Nd3+ cations are surrounded by eight sulfur atoms arranged as (uncapped) square antiprisms. The entire structure is dominated by (K1)+ containing {(Nd2[PS4]2[P2S6])4–} layers parallel (101) which are three‐dimensionally interconnected by (K2)+ cations.  相似文献   

13.
Synthesis and Crystal Structures of (NEt4)2[TeS3], (NEt4)2[Te(S5)(S7)], and (NEt4)4[Te(S5)2][Te(S7)2] (NEt4)2[TeS3] was obtained by the reaction of NEt4Cl, Na2S4 and tellurium in acetonitrile. It reacts with sulfur, yielding (NEt4)2[Te(S5)(S7)], which is transformed to (NEt4)4[Te(S5)2][Te(S7)2] by recrystallization from hot acetonitrile. According to the X-ray structure analysis, crystals of (NEt4)2[TeS3] are monoclinic (space group P21/c) and form twins with the twinning plane (001); they contain pyramidal TeS32– ions. (NEt4)2[Te(S5)(S7)] forms triclinic twins (space group P1) with the twinning plane (010). In the [Te(S5)(S7)]2– ion an S5 and an S7 atom group are bonded in a chelate manner to the tellurium atom, which has square coordination. (NEt4)4[Te(S5)2][Te(S7)2] (monoclinic, space group P21/c) contains two kinds of anions, the known [Te(S5)2]2– and the new [Te(S7)2]2– ion which has two S7 chelating groups.  相似文献   

14.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

15.
16.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

17.
The reaction of ZrCl4 with oleum (65 % SO3) in the presence of Ag2SO4 at 250 °C yielded colorless single crystals of Zr(S2O7)2 [orthorhombic, Pccn, Z = 4, a = 709.08(6) pm, b = 1442.2(2) pm, c = 942.23(9) pm, V = 963.5(2) × 106 pm3]. Zr(S2O7)2 shows Zr4+ ions in an eightfold distorted square antiprismatic coordination of oxygen atoms belonging to four chelating disulfate units. Each S2O72– ion is connected to a further Zr4+ ion leading to chains according to 1[Zr(S2O7)4/2]. The same reaction at a temperature of 150 °C resulted in the formation of Ag4[Zr(S2O7)4] [monoclinic, C2/c, Z = 4, a = 1829.35(9) pm, b = 704.37(3) pm, c = 1999.1(1) pm, β = 117.844(2)°, V = 2277.6(2) × 106 pm3]. Ag4[Zr(S2O7)4] exhibits the unprecedented [Zr(S2O7)4]4– anion, in which the central Zr4+ cation is coordinated by four chelating disulfate units. Thus, in Ag4[Zr(S2O7)4] the 1[[Zr(S2O7)4/2] chains observed in Zr(S2O7)2 are formally cut into pieces by the implementation of Ag+ ions.  相似文献   

18.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

19.
20.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号