首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desulfurization of several N,2-diaryl-5-(arylimino)-2,5-dihydro-4-nitroisothiazol-3-amines 5 with Ph3P led to complex mixtures of products in low yields. For instance, quinoxaline-2-carboxamide 1-oxides of type 6 (Scheme 2) and, in some cases, also 3-nitroquinolines of type 7 (Scheme 5) were isolated. By the desulfurization of the substituted derivatives 5b – e , a rearrangement of the intermediates yielded 6 and 7 with a different substitution pattern from that expected from the starting materials (Scheme 3). The additional formation of two isomeric 1,2,5-oxadiazole-3-carboxamides 8 was observed only in the case of 5d (R1=R2=F) (Scheme 6). Under the same reaction conditions, the major product of the desulfurization of 5c was the quinoxaline-2-carboxamide 1-oxide 9 (Scheme 7). Reaction mechanisms involving intermediate ketene imines and O transfer from the NO2 group to the neighboring ketene imine are proposed. The structures of 6a , 6e , 6k , 7b , and 8d were established by X-ray crystallography, while the structure of 9 was elucidated by 2D-NMR spectroscopy and corroborated by X-ray crystallography.  相似文献   

2.
《Tetrahedron: Asymmetry》2005,16(6):1215-1220
The conjugate addition of thioacetic acid to methacrylamides with chiral C2-symmetric trans-2,5-disubstituted pyrrolidines afforded the addition products in excellent stereoselectivities (>99% de) and good yields (80–90%). The high selectivity was attributed mainly to the steric effect of the chiral auxiliaries. The cyclic nature of the chiral auxiliaries seemed also important for both the stereoselectivity and the reaction rate. Acidic hydrolysis of the adduct containing (2R,5R)-bis(methoxymethyl)pyrrolidine gave (S)-3-mercapto-2-methylpropanoic acid, a key intermediate for captopril, in 98% ee and 96% yield. The chiral auxiliary was recovered in the demethylated form of N-Boc-(2R,3R)-bis(hydroxymethyl)pyrrolidine in 90% yield.  相似文献   

3.
New types of chiral phosphorus/nitrogen ligands, capable of forming six-membered-ring metal chelates have been prepared from α,α,α′,α′-tetraaryl-1,2-dioxolane-4,5-dimethanols (TADDOLs), PCl3, and dihydrooxazole alcohols (from amino acids) ( 7 in Scheme 1). The X-ray crystal structure of a Rh complex of one of these ligands, 8b , has been determined (Scheme 2 and Fig.). Enantioselective hydrosilylations of dialkyl and aryl alkyl ketones with Ph2SiH2/0.01 equiv. RhI⋅ 7 have been studied and found to provide secondary alcohols in enantiomer ratios of up to 97 : 3 (Scheme 3 and Table). The ligand prepared from (R,R)-TADDOL and the (R)-valine-derived (R)-α,α-dimethyl-4-isopropyl-4,5-dihydrooxazole-2-methanol gives better results than the (R,R,S)-isomer ( 7d vs. 7c in Scheme 3), and an i-Pr group on the 4,5-dihydrooxazole ring gives rise to a slightly better selectivity than a Ph group. With the (R,R,R)-ligands the hydrogen transfer occurs from the Re face of the oxo groups (Scheme 4).  相似文献   

4.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

5.
Technical Procedures for the Synthesis of Carotenoids and Related Compounds from 6-Oxo-isophorone. III. A New Concept for the Synthesis of the Enantiomeric Astaxanthins A new and efficient concept for the total synthesis of (3S, 3'S)- and (3R, 3'R)-astaxanthin ( 1a and 1c , resp.) in high overall yield and up to 99,2% enantiomeric purity is described. Key intermediates are the (S)- and (R)-acetals 10 and 17 , respectively (Scheme 2). These chiral building blocks were synthesized via three different routes: a) functionalization of the enantiomeric 3-hydroxy-6-oxo-isophorons4) 2 and 11 , respectively (Scheme 2); b) optical resolution of 3,4-dihydroxy-compound4) 19 (Scheme 3), and c) fermentative reductions of 6-oxo-isophorone derivatives (Schemes 4 and 5). - The absolute configurations of the two intermediates 12 and 13 (Scheme 2) have been confirmed by X-ray analysis. - The final steps leading to the enantiomeric astaxanthins are identical with those described for optically inactive astaxanthin [1].  相似文献   

6.
This work describes L -phenylalanine cyclohexylamide ( 5c ) as a simple, cheap, and powerful chiral auxiliary for the synthesis of a series of optically pure α,α-disubstituted (R)- and (S)-amino acids of type 1 , such as (R)- and (S)-2-methyl-phenylalanine ( 1a ), (R)- and (S)-2-methyl-2-phenylglycine ( 1b ), and (R)- and (S)-2-methylvaline ( 1c ; Scheme 3). These amino acids were efficiently transformed into the suitably protected and activated amino acid building blocks (R)- and (S)- 12b and (R)- and (S)- 12c (Scheme 4) which are ready for incorporation into peptides by solution or solid-phase techniques. Based on the crystal structures of 6b, 6c , and 7a belonging to the diastereoisomeric peptides series 6 and 7 , the absolute configurations of each member of the series were determined. β-Turn geometries of type II′ and I were observed for 6b and 7a , respectively, whereas 6c crystallized in an extended conformation. The impacts of side-chain variation on conformation and crystal packing of these triamides are discussed.  相似文献   

7.
Employing thujone-derived intermediates, a series of achiral ( 9a–d ; Scheme 1) and chiral ( 11b and 11d; Scheme 2) terpene analogues related to the biologically active ‘terpenoid’ hybrids have been prepared. The stereochemistry of the key epoxidation reaction was established by correlation of the product 11b with the previously reported alcohol (R)- 20 of known absolute configuration (Scheme 3).  相似文献   

8.
Two new chiral bidentate (phosphinophenyl)benzoxazine P,N-ligands 2a and 2b were synthesized from highly enantiomer-enriched 2-(1-aminoalkyl)phenols 4 . Ligand rac- 2a was obtained on refluxing the t-Bu-substituted (aminomethyl)phenol 4a with 2-(diphenylphosphino)benzonitrile in chlorobenzene in the presence of anhydrous ZnCl2 followed by decomplexation (Scheme 2). This reaction, when carried out with (+)-(S)- 4a , was accompanied by racemization at the stereogenic center of the alkyl side chain. The enantiomerically pure ligands (+)-(R)- 2a and (−)-(S)- 2a were obtained using a stepwise procedure via the amides (−)-(R)- and (+)-(S)- 5b , respectively, followed by cyclization to benzoxazines (+)-(R)- and (−)-(S)- 7b , respectively, with triflic anhydride and by F-atom substitution by diphenylphosphide (Schemes 3 and 5). In the case of the i-Pr analogue 2b , this last step resulted in racemization (Scheme 6). This was overcome by preparing the bromo derivative and introducing the diphenylphosphine group via Br/Li exchange and reaction with chlorodiphenylphosphine (Scheme 7). The first application of (+)-(R)- 2a in an asymmetric Heck reaction showed high enantioselectivity (91%) (Scheme 8).  相似文献   

9.
The chiral N-(2-benzoylethyl)-N-tosylglycinamides 1a-c were prepared from the C2-symmetric pyrrolidines 5a-c . Irradiation of these ketones 1a-c gave cis-3-hydroxyprolinamides 10-12 in moderate to good yields (Scheme 3). The de of the photocyclizations depended on the size of the substituents in positions C(2) and C(5) of the chiral pyrrolidine auxiliaries. In addition, the de varied with the reaction temperature, allowing the determination of activation-parameter differences. The structure of products 10-12 were established by NMR and X-ray analyses.  相似文献   

10.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

11.
The synthesis of 46 derivatives of (2R,3R,4S)‐2‐(aminomethyl)pyrrolidine‐3,4‐diol is reported (Scheme 1 and Fig. 3), and their inhibitory activities toward α‐mannosidases from jack bean (B) and almonds (A) are evaluated (Table). The most‐potent inhibitors are (2R,3R,4S)‐2‐{[([1,1′‐biphenyl]‐4‐ylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 3fs ; IC50(B)=5 μM , Ki=2.5 μM ) and (2R,3R,4S)‐2‐{[(1R)‐2,3‐dihydro‐1H‐inden‐1‐ylamino]methyl}pyrrolidine‐3,4‐diol ( 3fu ; IC50(B)=17 μM , Ki=2.3 μM ). (2S,3R,4S)‐2‐(Aminomethyl)pyrrolidine‐3,4‐diol ( 6 , R?H) and the three 2‐(N‐alkylamino)methyl derivatives 6fh, 6fs , and 6f are prepared (Scheme 2) and found to inhibit also α‐mannosidases from jack bean and almonds (Table). The best inhibitor of these series is (2S,3R,4S)‐2‐{[(2‐thienylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 6o ; IC50(B)=105 μM , Ki=40 μM ). As expected (see Fig. 4), diamines 3 with the configuration of α‐D ‐mannosides are better inhibitors of α‐mannosidases than their stereoisomers 6 with the configuration of β‐D ‐mannosides. The results show that an aromatic ring (benzyl, [1,1′‐biphenyl]‐4‐yl, 2‐thienyl) is essential for good inhibitory activity. If the C‐chain that separates the aromatic system from the 2‐(aminomethyl) substituent is longer than a methano group, the inhibitory activity decreases significantly (see Fig. 7). This study shows also that α‐mannosidases from jack bean and from almonds do not recognize substrate mimics that are bulky around the O‐glycosidic bond of the corresponding α‐D ‐mannopyranosides. These observations should be very useful in the design of better α‐mannosidase inhibitors.  相似文献   

12.
《Tetrahedron: Asymmetry》2001,12(17):2481-2487
Two short and highly stereocontrolled syntheses for 7a-epi-hyacinthacine A2 (7-deoxyalexine) 3 and 5,7a-diepi-hyacinthacine A3 4 are, respectively, reported herein. An appropriately protected polyhydroxypyrrolidine, (2R,3R,4R,5S)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine 5, readily available from d-fructose, was chosen as the chiral starting material.  相似文献   

13.
The hydrochlorides of both enantiomers of the antibiotic anisomycin were prepared starting with the ‘diacetone‐fructose’‐substituted allene 1 and the N‐Boc‐protected imine precursor 2a . Addition of an excess of lithiated 1 to 2a provided a 2 : 1 mixture 3a of diastereoisomers, which were cyclized to 4a under base promotion (Scheme 2). The two diastereoisomers of 4a were separated and converted into enantiomerically pure pyrrolidin‐3‐ones (2R)‐ 5a and (2S)‐ 5a . A similar sequence yielded the N‐Tos‐protected compounds (2R)‐ 5b and (2S)‐ 5b . Compounds 5a were converted into silyl enol ethers 6 and by subsequent regio‐ and stereoselective hydroboration into pyrrolidine derivatives 7 (Scheme 3). Straightforward functional‐group transformations led to the hydrochlorides 9 of anisomycin (Scheme 3). The (2R) series provided the hydrochloride (2R)‐ 9 of the natural occurring enantiomer, whereas the (2S) series furnished the antipode (2S)‐ 9 . The overall sequence to the natural product involved ten steps with eight purified intermediates and afforded an overall yield of 8%. Our stereochemically divergent approach to this type of hydroxylated pyrrolidines is highly flexible and should easily allow preparation of many analogues.  相似文献   

14.
The cycloaddition between N‐protected 3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indoles and substituted maleimides (= 1H‐pyrrole‐2,5‐diones) yielded substituted pyrrolo[3,4‐a]carbazole derivatives bearing an additional succinimide (= pyrrolidine‐2,5‐dione) moiety either at C(5a) or C(10b) depending on the type of the protection group at the indole N‐atom. Derivatives substituted at C(10b) were isolated when the protection group, Me3Si or Boc (tBuOCO), was eliminated during the reaction (Schemes 2 and 3), whereas a substitution at C(5a) was observed when an electron‐withdrawing group, Tos (4‐MeC6H4SO2) or pivaloyl (Me3CCO), was not eliminated (Scheme 1). Complex results were found in reactions between 1‐(trimethylsilyl)‐3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indole, in contrast to formerly reported results (Scheme 3). Some derivatives of 1H,5H‐[1,2,4]triazolo[1′,2 : 1,2]pyridazino[3,4‐b]indole‐1,3(2H)‐dione were obtained from reactions with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (Scheme 2). All structures were established by spectroscopic data, by calculations, and one representative structure was confirmed by an X‐ray crystallographic analysis (Fig.). Finally, the formation of the different structure types was discussed, and compared with similar reactions reported in the literature.  相似文献   

15.
The 1,2‐dithiolosultam derivative 14 was obtained from the (α‐bromoalkylidene)propenesultam derivative 9 (Scheme 1). Regioselective cleavage of the two ester groups (→ 1b or 2b ) allowed the preparation of derivatives with different substituents at C(3) in the dithiole ring (see 27 and 28 ) as well as at C(6) in the isothiazole ring (see 17 – 21 ; Scheme 2). Curtius rearrangement of the 6‐carbonyl azide 21 in Ac2O afforded the 6‐acetamide 22 , and saponification and decarboxylation of the latter yielded ‘sulfothiolutin’ ( 30 ). Hydride reductions of two of the bicyclic sultams resulted in ring opening of the sultam ring and loss of the sulfonyl group. Thus the reduction of the dithiolosultam derivative 14 yielded the alkylidenethiotetronic acid derivative 33 (tetronic acid=furan‐2,4(3H,4H)‐dione), and the lactam‐sultam derivative 10 gave the alkylidenetetramic acid derivative 35 (tetramic acid=1,5‐dihydro‐4‐hydroxy‐2H‐pyrrol‐2‐one) (Scheme 3). Some of the new compounds ( 14, 22, 26 , and 30 ) exhibited antimycobacterial activity. The oxidative addition of 1 equiv. of [Pt(η2‐C2H4)L2] ( 36a , L=PPh3; 36b , L=1/2 dppf; 36c , L=1/2 (R,R)‐diop) into the S? S bond of 14 led to the cis‐(dithiolato)platinum(II) complexes 37a – c . (dppf=1,1′‐bis(diphenylphosphino)ferrocene; (R,R)‐diop={[(4R,5R)‐2,2‐demithyl‐1,3‐dioxolane‐4,5‐diyl]bis(methylene)}bis[diphenylphosphine]).  相似文献   

16.
The thermal reaction of trans‐1‐methyl‐2,3‐diphenylaziridine (trans‐ 1a ) with aromatic and cycloaliphatic thioketones 2 in boiling toluene yielded the corresponding cis‐2,4‐diphenyl‐1,3‐thiazolidines cis‐ 4 via conrotatory ring opening of trans‐ 1a and a concerted [2+3]‐cycloaddition of the intermediate (E,E)‐configured azomethine ylide 3a (Scheme 1). The analogous reaction of cis‐ 1a with dimethyl acetylenedicarboxylate ( 5 ) gave dimethyl trans‐2,5‐dihydro‐1‐methyl‐2,5‐diphenylpyrrole‐3,4‐dicarboxylate (trans‐ 6 ) in accord with orbital‐symmetry‐controlled reactions (Scheme 2). On the other hand, the reactions of cis‐ 1a and trans‐ 1a with dimethyl dicyanofumarate ( 7a ), as well as that of cis‐ 1a and dimethyl dicyanomaleate ( 7b ), led to mixtures of the same two stereoisomeric dimethyl 3,4‐dicyano‐1‐methyl‐2,5‐diphenylpyrrolidine‐3,4‐dicarboxylates 8a and 8b (Scheme 3). This result has to be explained via a stepwise reaction mechanism, in which the intermediate zwitterions 11a and 11b equilibrate (Scheme 6). In contrast, cis‐1,2,3‐triphenylaziridine (cis‐ 1b ) and 7a gave only one stereoisomeric pyrrolidine‐3,4‐dicarboxylate 10 , with the configuration expected on the basis of orbital‐symmetry control, i.e., via concerted reaction steps (Scheme 10). The configuration of 8a and 10 , as well as that of a derivative of 8b , were established by X‐ray crystallography.  相似文献   

17.
The aldol adducts 1a – 13a of R,R-2(tertbutyl)-6-methyl-1,3-dioxan-4-one (from 3-hydroxybutanoic acid) to aldehydes, single diastereoisomers obtained as described previously, are acetylated or benzoylated to the corresponding esters 1b – 5b and 6c – 13c , respectively, which in turn are reduced with LiAlH4 to the title compounds 14 – 24 . The enantiomerically pure triols thus available may be useful as chiral building blocks, as auxiliaries for enantioselective reactions, and as center pieces for chiral dendrimers.  相似文献   

18.
Achiral P‐donor pincer‐aryl ruthenium complexes ([RuCl(PCP)(PPh3)]) 4c , d were synthesized via transcyclometalation reactions by mixing equivalent amounts of [1,3‐phenylenebis(methylene)]bis[diisopropylphosphine] ( 2c ) or [1,3‐phenylenebis(methylene)]bis[diphenylphosphine] ( 2d ) and the N‐donor pincer‐aryl complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 2). The same synthetic procedure was successfully applied for the preparation of novel chiral P‐donor pincer‐aryl ruthenium complexes [RuCl(P*CP*)(PPh3)] 4a , b by reacting P‐stereogenic pincer‐arenes (S,S)‐[1,3‐phenylenebis(methylene)]bis[(alkyl)(phenyl)phosphines] 2a , b (alkyl=iPr or tBu, P*CHP*) and the complex [RuCl{2,6‐(Me2NCH2)2C6H3}(PPh3)], ( 3 ; Scheme 3). The crystal structures of achiral [RuCl(equation/tex2gif-sup-3.gifPCP)(PPh3)] 4c and of chiral (S,S)‐[RuCl(equation/tex2gif-sup-6.gifPCP)(PPh3)] 4a were determined by X‐ray diffraction (Fig. 3). Achiral [RuCl(PCP)(PPh3)] complexes and chiral [RuCl(P*CP*)(PPh3)] complexes were tested as catalyst in the H‐transfer reduction of acetophenone with propan‐2‐ol. With the chiral complexes, a modest enantioselectivity was obtained.  相似文献   

19.
The synthesis of compound 2 and its derivatives 6 and 8 combining a pyrrolidine ring with an 1H‐pyrrole unit is described (Scheme 2). Their attempted usability as organocatalysts was not successful. Reacting these simple pyrrolidine derivatives with cinnamaldehyde led to the tricyclic products 3b, 9b , and 10b first (Scheme 1, Fig. 2). The final, major products were the pyrrolo‐indolizidine tricycles 3a, 9a , and 10a obtained via the iminium ion reacting intramolecularly with the nucleophilic β‐position of the 1H‐pyrrole moiety (cf. Scheme 1).  相似文献   

20.
The hydrogenations of methyl 2-oxoeyclopentanecarboxylate ( 1 ), ethyl 2-oxocyelohexanecarboxylate ( 3 ), and 2-methylcyclohexanone ( 5 ) on unmodified Raney-Ni catalyst lead predominately to the formation of the cis-hydroxy diastereoisomers of 2 , 4 , and 6 , respectively (Scheme 2). In the asymmetric hydrogenations on catalysts modified with chiral tartaric acid ((R, R )-C4H6O6/Raney-Ni and (R, R)-C4H6O6/NaBr/Raney-Ni), the predominance of the cis-isomer increases significantly. The hydrogenations of β-keto esters 1 and 3 proceed with an enantioselectivity of 10–15% on the modified catalysts, while the similar hydrogenation of 5 yields optically inactive 6 . The (1S,2R)-enantiomers of the cis-isomers of 2 and 4 are formed in larger quantity, whereas the (lR,2R)-enantiomers of the corresponding trans-isomers predominate (Scheme 1). The enantioselective formation of trans- 2 and trans- 4 can be interpreted mainly in terms of the asymmetric hydrogenation of cyclic β-keto esters through the keto form, while that of the corresponding cis-hydroxy esters proceeds through the enol form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号