首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures have been developed to generate molecular electrostatic potentials based on correlated wave function from ab initio or semiempirical electronic structure programs. A new algorithm for point-wise sampling of the potential is described and used to obtain partial atomic charges via a linear, least squares fit between classical and quantum mechanical electrostatic potentials. The proposed sampling algorithm is efficient and promises to introduce less rotational variance in the potential derived partial charges than algorithms applied previously. Electrostatic potentials and fitted atomic charges from ab initio (HF/6–31G* and MP2/6-31G*) and semiempirical (INDO/S; HF, SECI, and SDCI) wave functions are presented for the electronic ground (S0) and excited (1Lb, 1La) states of 3-methylindole. © 1992 by John Wiley & Sons, Inc.  相似文献   

2.
A systematic study of the suitability of PM3-derived molecular electrostatic potentials (MEPs) is presented. Forty-six MEP minima, 81 electrostatic charges, and 17 electrostatic dipoles were determined at the PM3 level and compared with those obtained from the ab initio 6-31G* wave function, as well as from the semiempirical MNDO and AM1 wave functions. The statistical results of the comparison analysis between semiempirical and ab initio 6-31G* MEPs show that PM3 is in general reliable for the study of the MEP minima but a mediocre method as a source of electrostatic charges. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The conformational potential energy surface as a function of the two internal torsion angles in C-nitrosomethanol has been obtained using the semiempirical AM1 method. Optimized geometries are reported for the local minima on this surface and also for the corresponding points on the HF/6-31G, 6-31G*, and 6-31G** surfaces. All methods predict cis and trans minima which occur in degenerate pairs, each pair being connected by a transition state of Cs symmetry. The AM1 structures are found to compare well with the corresponding ab initio structures. Ab initio HF/6-31G and HF/6-31G* harmonic vibrational frequencies are reported for the cis and trans forms of nitrosomethanol. When scaled appropriately the calculated frequencies are found to compare well with experimental frequencies. The ab initio calculations predict the energy barrier for cis → trans isomerization to be between 5.8 and 6.5 kcal/mol with the trans → cis isomerization barrier lying between 2.3 and 6.5 kcal/mol. The corresponding AM1 energy barriers are around 1 kcal/mol lower in energy. The ab initio calculations predict the barrier to conversion between the two cis rotamers to be very small with the AM1 value being around 1 kcal/mol. Both AM1 and ab initio calculations predict interconversion between trans rotamers to require between 1.2 and 1.4 kcal/mol.  相似文献   

4.
Atomic charges derived from a recently described approach to the very rapid computation of AM1 electrostatic potentials (ESP) accurately parallel, but are ca. 20% smaller than, the corresponding HF/6-31G* values. The dipole moments computed from the AM1 charges are virtually identical to those derived directly from the wave function and in rather better agreement with the experimental values than those computed using the HF/6-31G* charges. Unlike other approaches to the semiempirical calculation of ESP-derived charges, the present method also yields near HF/6-31G* quality potentials close to the molecular periphery. For medium-sized organic molecules (40-100 basis functions), the method is approximately two orders of magnitude faster than those involving prior deorthogonalization of AM1 wave function and explicit computation of the full ESP integral matrix. © 1994 by John Wiley & Sons, Inc.  相似文献   

5.
The suitability of the two most widely used strategies to compute semiempirical MEPs is examined. For this purpose, MEP minima, electrostatic charges, and dipoles for a large number of molecules were computed at the AM1, MNDO, and PM3 levels using both the NDDO strategy developed by Ferenczy, Reynolds, and Richards and our own quasi-ab initio method. Results demonstrate that the quasi-ab initio is preferred over the NDDO method for the computation of MEP minima. It is also found that the best set of semiempirical charges and dipoles are obtained using either the AM1 NDDO or the MNDO quasi-ab initio methods. In these two cases, the quality of the results is fully comparable with 6-31G* values. © 1994 by John Wiley & Sons, Inc.  相似文献   

6.
Ab initio MP2/6-31G*//MP2/6-31G* and semiempirical AM1 and PM3 calculations on a series of differently substituted α-oxo-ketenes are used to investigate E/Z-isomerism and rotational barriers in these molecules. Sterically crowded derivatives are found to exist solely as s-E conformers. The unusual stability of these derivatives thus can be attributed to their inability to adopt the s-Z conformation required for the normal α-oxo-ketene reactions. With respect to structures and energies, the PM3 method (especially in the case of highly crowded molecules) is found to be less reliable than AM1. Ab initio HF/3-21G and PM3 vibrational frequencies appear to be of sufficient accuracy for a distinction between s-Z and s-E conformers. In this respect, the AM1 method appears less reliable. © 1994 by John Wiley & Sons, Inc.  相似文献   

7.
Ab initio molecular orbital calculations are performed on the planar ground states (S0), the 90°‐twisted triplet (T1), and pyramidalized singlet (S1) excited states of ethylene, methaniminium cation (MC), monocyano‐ (MCE), 1,1‐dicyano‐ (DCE), 1,1‐dihydroxy‐ (DHE), and 1,1‐dicyano‐2,2‐dihydroxy (DCHE) ethylenes. Equilibrium geometries are optimized at the Hartree–Fock (HF) level with the 6‐31G* basis set. Electron correlation corrections are estimated by optimizing the HF/6‐31G* geometries at the (U)MP2/6‐31G* level and then by carrying out single‐point calculations at the fourth‐order Møller–Plesset perturbation theory ((U)MP4/6‐311G**//MP2/6‐31G*). The effects of various types of perturbations on the structures, energetics, dipole moments, and state ordering of S0, S1, and T1 are carefully investigated. “Positive” S1T1 splittings are estimated at the HF level for all studied molecules, while “negative” S1T1 splittings are obtained at the MP2 level for MC, DHE, and DCHE. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 242–254, 2001  相似文献   

8.
9.
The electrostatic molecular potential minima around the guanine–cytosine base pair within a B-DNA minihelix are computed, taking into account the contributions of the sugar-phosphate backbone and of the adjacent base-pairs. The calculations are based on ab initio SCF wave functions of the different constituents of the nucleic acid. The results point to significant differences in the potential between the isolated nucleic acid bases or base-pairs and those within the DNA. Altogether the minima in the G–C regions are strongly enhanced in the minihelix. They benefit from the field created by the neighboring phosphates. From the purely electrostatic viewpoint an ambiguity remains as concerns the relative affinity of N7 and N3 of guanine for electrophiles. On the other hand, guanine should altogether be more susceptible than cytosine to such reagents, this ordering concerning also its NH2 group compared to that of cytosine.  相似文献   

10.
A new strategy to evaluate accurate electrostatic charges from semiempirical wave functions is reported. The rigorous quantum mechanical molecular electrostatic potentials computed from both MNDO and AM1 wave functions are fitted to the point-charge molecular electrostatic potential to obtain the electrostatic charges. The reliability of this strategy is tested by comparing the semiempirical electrostatic charges for 21 molecules with the semiempirical Mulliken charges and with the ab initio STO-3G and 6-31G* electrostatic charges. The ability of the dipoles derived from the semiempirical electrostatic and Mulliken charges as well as from the SCF charge distributions to reproduce the ab initio 6-31G* electrostatic dipoles and the gas phase experimental values is determined. The statistical analysis clearly point out the goodness of the semiempirical electrostatic charges, specially when the MNDO method is used. The excellent relationships found between the MNDO and 6-31G* electrostatic charges permit to define a scaling factor which allows to accurately reproduce the 6-31G* electrostatic charge distribution as well as the experimental dipoles from the semiempirical electrostatic charges.  相似文献   

11.
The harmonic vibrational frequencies of the ground state S0 of aniline obtained from various ab initio methods [6-31G, 6-31G(*) and 6-31G* basis sets] and semiempirical methods (MINDO/3, MNDO, AM1 and PM3) have been compared to the experimental vibrational spectra. Detailed theoretical analyses of the atomic Cartesian displacements of all normal modes are presented. The semiempirical PM3 method reproduces the experimental frequencies of aniline with comparable accuracy to the ab initio methods. Ale PM3 method will be useful in predicting the vibrational spectra of larger aromatic amines.  相似文献   

12.
The structural stabilities of endo and exo conformations of retronecine and heliotridine molecules were analyzed using different ab initio, semiempirical, and molecular mechanics methods. All electron and pseudopotential ab initio calculations at the Hartree-Fock level of theory with 6-31G* and CEP-31G* basis sets provided structures in excellent agreement with available experimental results obtained from X-ray crystal structure and 1H-NMR (nuclear magnetic resonance) studies in D2O solutions. The exo conformations showed a greater stability for both molecules. The most significant difference between the calculations was found in the ring planarity of heliotridine, whose distortion was associated with the interaction between the O(11)H group and the C(1)-C(2) double bond as well as with a hydrogen bond between O(11)H and N(4). The discrepancy between pseudopotential and all-electron optimized geometries was reduced after inclusion of the innermost electrons of C(1), C(2), and N(4) in the core potential calculation. The MNDO, AM1, and PM3 semiempirical results showed poor agreement with experimental data. The five-membered rings were observed to be planar for AM1 and MNDO calculations. The PM3 calculations for exo-retronecine showed a greater stability than the endo conformer, in agreement with ab initio results. A good agreement was observed between MM3 and ab initio geometries, with small differences probably due to hydrogen bonds. While exo-retronecine was calculated to be more stable than the endo conformer, the MM3 calculations suggested that endo-heliotridine was slightly more stable than the exo form. © 1996 by John Wiley & Sons, Inc.  相似文献   

13.
14.
The Comparative Molecular Field Analysis (CoMFA) was developed to investigate a three-dimensional quantitative structure activity relationship (3D-QSAR) model of ligands for the sigma 1 receptor. The starting geometry of sigma-1 receptor ligands was obtained from the Tripos force field minimizations and conformations were decided from DISCOtech using the SYBYL 6.8. program. The structures of 48 molecules were fully optimized at the ab initio HF/3-21G* and semiempirical AM1 calculations using GAUSSIAN 98. The electrostatic charges were calculated using several methods such as semiempirical AM1, density functional B3LYP/3-21G*, and ab initio HF/3-21G*, MP2/3-21G* calculations within GAUSSIAN 98. Using the optimized geometries, the CoMFA results derived from the HF/3-21G method were better than those from AM1. The best CoMFA was obtained from HF/3-21G* optimized geometry and charges (R2 = 0.977). Using the optimized geometries, the CoMFA results derived from the HF/3-21G methods were better than those from AM1 calculations. The training set of 43 molecules gave higher R2 (0.989-0.977) from HF/3-21G* optimized geometries than R2 (0.966-0.911) values from AM1 optimized geometries. The test set of five molecules also suggested that HF/3-21G* optimized geometries produced good CoMFA models to predict bioactivity of sigma 1 receptor ligands but AM1 optimized geometries failed to predict reasonable bioactivity of sigma 1 receptor ligands using different calculations for atomic charges.  相似文献   

15.
A correlation was found between oxidation potentials of acylcyclopropanes in solution (in CH2Cl2 and CH3CN) and their HOMO energies calculated by semiempirical (AM1) and nonempirical (HF/6-31G and HF/6-31G**) methods. The correlation provides a possibility to forecast the reaction direction of the mentioned substrates and N2O4. The correlation possesses a general character. It was established for instance that arylcyclo-propanes, cyclopropylmethyl- and allylbenzenes oxidized at more positive potentials than reduction potential of NO+ and having more positive eHOMOthan 9.0 eV (AM1), 8.4 eV (HF/6-31G), and 8.3 eV (HF/6-31 G**) reacted with N2O4 following the mechanism "electron transfer radical pair recombination" affording nitroaromatic derivatives retaining the cyclopropane (or allyl) fragments. Substrates of the same type where the electron transfer to NO+ should be endothermic process and whose HOMO values are less than the above critical numbers react with N2O4 by the mechanism of electrophilic cyclopropane ring opening (with aryl and benzylcyclopropanes) or by electrophilic addition across the double C=C bond (with allylbenzenes).  相似文献   

16.
17.
We report an implementation of an atomic multipole model (up to quadrupole) for calculating the electrostatic properties of molecules based on electron densities derived from MNDO-like NDDO-based semiempirical MO calculations with minimal s,p,d valence basis sets. The results were validated by a comparison of the calculated values of the molecular electrostatic potential with those obtained from fine grain numerical integrations (both with AM1*), B3LYP/6–31G(d) and MP2/6–31G(d). The DFT and ab initio potentials can be reproduced remarkably well (mean unsigned error <2 kcal mol−1 e−1) using simple linear regression equations to correct the AM1* (multipole) results. Dedicated to Prof. Karl Jug on the occasion of his 65th birthday  相似文献   

18.
Geometry optimization calculations were performed using the B3LYP/6‐31+G* method on the complexes of 1O2 and 3O2 molecules with a stacked dimer of planar guanine, varying the distance (D) between the planes of the guanine molecules. In this process, geometries of the guanine molecules were held fixed, D was fixed at different values, while the bond lengths of 1O2 and 3O2 as well as their orientations with respect to the guanine molecules were optimized for each value of D. The complexes in their most stable geometries were solvated in water using the integral equation formalism of the polarized continuum model of the self‐consistent reaction field theory. In gas phase, the most stable complex between 1O2 and the guanine dimer (2G.1O2) is formed when D is about 6 Å, while the most stable complex between 3O2 and the guanine dimer (2G.3O2) is formed when D is about 3.75 Å. In the minimum total energy geometry of 2G.1O2, 1O2 is located between the guanine molecules, above the imidazole ring of one of them. However, in the minimum total energy geometry of 2G.3O2, 3O2 is located outside the stack of guanine molecules, near the amino group of one of them. The solvation calculations showed that in aqueous media, 1O2 would bind with the stacked guanine dimer more strongly than in gas phase, while 3O2 would not bind with the same. The mode of binding of 1O2 with the stacked guanine dimer is such that it seems that 1O2 would replace one basepair in DNA, as happens in the intercalative mode of binding of drugs and other molecules, and it can lead to the formation of 8‐oxoguanine that has a mutagenic nature. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
A new mechanism is suggested for the anionic polymerization of isoprene. The key moment of this mechanism is thermal electron excitation of the complex of a living polymer with a monomer to the low lying S1 (T1) state involving a charge (electron) and (Li+) cation transfer from the terminal unit to the monomer molecule. It is stated that the probability of chemical bonding depends on the spin density on the radical centers of reactant molecules and on the geometry of the reaction complex. The semiempirical AM1 and ab initio 6-31G* quantum-chemical calculations revealed strong interaction for the ground electronic state of the complex (5-10 kcal/mole) and low energies of the excited triplet levels (<10 kcal/mole).  相似文献   

20.
A detailed conformational analysis was performed on simple substituted hydroxylamines using either ab initio (from HF/6-31G* to RQCISD/6-311G**) or popular semiempirical (MNDO, AM1, PM3) methods to ascertain the allowed conformations and to establish the influence of the level of theory on the results. All the ab initio results (provision being made for their expected divergences) are similar and show a simple twofold character for the > N? O? rotational energy, without any appreciable populations of the cis conformer. On the other hand, the predictive value of the semiempirical methods for structural and energetical parameters of molecules bearing > N? O? moieties is limited, a situation like that prevailing for peptide bonds. The inversional barriers for the methyl-substituted hydroxylamines were also calculated and compared to the corresponding rotational energy barriers. Rotation is generally favored over inversion for hydroxylamine and its methylated derivatives. © 1994 by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号