首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abstraction of hydrogen/deuterium from CH3CH2Cl, CH3CHDCl, and CH3CD2Cl by photochemically generated ground-state chlorine atoms has been investigated over the temperature range of 8–94°C using methane as a competitor. Rate constant data for the following reactions have been obtained: The temperature dependence of the relative rate constants ki/kj was found to conform to the Arrhenius rate law, where the stated error limits are one standard deviation: and kr is the rate constant for the reference reaction (CH4 + Cl → CH3 + HCl). The β secondary kinetic isotope effects (k2/k3/k4) are close to unity and show a slight inverse temperature dependence. Both preexponential factors and activation energies decrease as a result of deuterium substitution in the adjacent chloromethyl group. The trends are well outside the limits of experimental error.  相似文献   

2.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

3.
The hydrogen abstraction from the chlorinated ethanes by chlorine atoms has been investigated in the liquid phase. Rate constants relative to that for hydrogen abstraction from chloroform have been measured between 267° and 333°K using a competition technique. The results are compared with gas-phase data.  相似文献   

4.
5.
The hydrogen abstraction from asymmetrically fluorinated and chlorofluorinated ethanes by chlorine atoms has been investigated in the gas phase between 264 and 333°K using the competition method. Arrhenius parameters for the reaction on both sites of the molecules are discussed.  相似文献   

6.
The mechanisms of the reactions: CH(3)CFCl(2) + Cl (R1) and CH(3)CF(2)Cl + Cl (R2) are studied over a wide temperature range (200-3000 K) using the dual-level direct dynamics method. The minimum energy path calculation is carried out at the MP2/6-311G(d,p) and B3LYP/6-311G(d,p) levels, and energetic information is further refined by the G3(MP2) theory. The H-abstraction from the out-of-plane for (R1) is the major reaction channel, while the in-plane H-abstraction is the predominant route of (R2). The canonical variational transition-state theory (CVT) with the small-curvature tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions and hydrogenation reactions as working chemical reactions, the standard enthalpies of formation for CH(3)CFCl(2), CH(3)CF(2)Cl, CH(2)CFCl(2), and CH(2)CF(2)Cl are evaluated at the CCSD(T)/6-311 + G(3df,2p)//MP2/6-311G(d,p) level of theory. The results indicate that the substitution of fluorine atom for the chlorine atom leads to a decrease in the C-H bond reactivity with a small increase in reaction enthalpies. Also, for all reaction pathways the variational effect is small and the SCT effect is only important in the lower temperature range on the rate constants.  相似文献   

7.
8.
Isotopic vapor-pressure differences between (CH3)2CO and (CD3)2CO have been measured by differential capacitance manometry. When combined with available absolute vapor pressures for (CH3)2CO the results may be expressed (206 to 333 K) as:
1n(pHpD) = 3642.6(K/T)2 ? 22.205(K/T) + 0.01129
  相似文献   

9.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

10.
The competitive reactions of Br atoms with CH4 and CD4 were studied over the temperature range of 562° to 637°K. Over this temperature interval, the kinetic isotope effect, kH/kD, varied from 3.05 to 2.47 for the reactions The rate constant ratio kH/kD, expressed in Arrhenius form, was found to equal (1.10 ± 0.05) exp (1030 ± 60/RT). A comparison is presented between the experimental result and the result obtained theoretically from absolute rate theory using the London-Eyring-Polanyi-Sato (LEPS) method of constructing the potential energy surface of the reaction. The agreement between theory and experiment is very poor, and this is believed to arise from the highly unsymmetrical nature of the potential energy surface involved in these reactions. A comparison is also presented between the kH/kD values obtained in the Br + CH4–CD4 experiments and the available data on the corresponding Cl + CH4–CD4 reactions.  相似文献   

11.
A direct dynamics study is carried out for the hydrogen abstraction reactions Cl + CH(4-n)F(n) (n = 1-3) in the temperature range of 200-1,000 K. The minimum energy paths (MEPs) of these reactions are calculated at the BH&H-LYP/6-311G(d,p) level, and the energies along the MEPs are further refined at the QCISD(T)/6-311+G(2df,2p) and QCISD(T)/6-311+G(d,p) (single-point) level. The rate constants obtained by using the improved canonical variational transition state theory incorporating small-curvature tunneling correction (ICVT/SCT) are in good agreement with the available experimental results. It is shown that the vibrational adiabatic potential energy curves for these reactions have two barriers, a situation similar to the analogous reactions CH(3)X+Cl (X=Cl, Br). The theoretical results show that for the title reactions the variational effect should not be neglected over the whole considered temperature range, while the small-curvature tunneling effect is only important in the lower temperature range. The effects of fluorine substitution on the rate of this kind of reactions are also examined.  相似文献   

12.
13.
1.  The competitive kinetics method was used to show that hydrogen abstraction from propylene by telomeric CCl3[CH2CH(CH3)]n radicals (n=1, 2) proceeds at 140°C with rate constants 2.5·103 and 1.8·103 liters/mole·sec, respectively.
2.  The polar effect upon the abstraction of hydrogen atoms from propylene by telomer radicals is less pronounced than upon the abstraction of a chlorine atom from CCl4.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 894–897, April, 1988.  相似文献   

14.
The kinetics of the reactions of Cl atoms with CH3ONO and CH3ONO2 have been studied using relative rate techniques. In 700 Torr of nitrogen diluent at 295 ± 2K, k(Cl + CH3ONO) = (2.1 ± 0.2) × 10−12 and k(Cl + CH3ONO2) = (2.4 ± 0.2) × 10−13 cm3 molecule−1 s−1. The result for k(Cl + CH3ONO2) is in good agreement with the literature data. The result for k(Cl + CH3ONO) is a factor of 4.5 lower than that reported previously. It seems likely that in the previous study most of the loss of CH3ONO which was attributed to reaction with Cl atoms was actually caused by photolysis leading to an overestimate of k(Cl + CH3ONO). © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 357–359, 1999  相似文献   

15.
The hydrogen abstraction reactions of CH3CHFCH3 and CH3CH2CH2F with the OH radicals have been studied theoretically by a dual-level direct dynamics method. The geometries and frequencies of all the stationary points are optimized by means of the DFT calculation. There are complexes at the reactant side or exit route, indicating these reactions may proceed via indirect mechanisms. To improve the reaction enthalpy and potential barrier of each reaction channel, the single point energy calculation is performed by the MC-QCISD/3 method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range 200-2000 K. The canculated CVT/SCT rate constants are consistent with available experimental data. The results show that both the variation effect and the SCT contribution play an important role in the calculation of the rate constants. For reactions CH3CHFCH3 and CH3CH2CH2F with OH radicals, the channels of H-abstraction from -CHF- and -CH2- groups are the major reaction channels, respectively, at lower temperature. Furthermore, to further reveal the thermodynamics properties, the enthalpies of formation of reactants CH3CHFCH3, CH3CH2CH2F, and the product radicals CH3CFCH3, CH3CHFCH2, CH3CH2CHF, CH3CHCH2F, and CH2CH2CH2F are studied using isodesmic reactions.  相似文献   

16.
Cho HG  Andrews L 《Inorganic chemistry》2004,43(17):5253-5257
Laser-ablated Ti atoms react with CH(3)F upon condensation with excess argon to form primarily CH(3)TiF and (CH(3))(2)TiF(2). Irradiation in the UV region promotes alpha-hydrogen rearrangement of CH(3)TiF to CH(2)=TiHF and increases the yield of (CH(3))(2)TiF(2). Annealing to allow diffusion and reaction of more CH(3)F markedly increases the yield of (CH(3))(2)TiF(2). This shows that the CH(3)TiF + CH(3)F reaction is spontaneous and that triplet state CH(3)TiF is an extremely reactive molecule. B3LYP calculations are extremely effective in predicting vibrational frequencies and isotopic shifts for CH(3)TiF and (CH(3))(2)TiF(2) and thus in confirming their identification from matrix infrared spectroscopy.  相似文献   

17.
Rate constants for hydrogen transfer reactions from C—H bonds to O(3P) in the gas phase have been calculated by the bond-energy bond-order method. The use of a single or double triplet repulsion term is discussed. Computational results indicate that with carefully selected input parameters, it is unnecessary to use a double-repulsion term. Tunneling corrections were carried out by two different procedures. Results indicate that in this case there is not much difference between the simple Wigner's treatment and more complicated methods.  相似文献   

18.
The kinetics of chlorine atom abstraction from trichloromethyl groups of the haloethanes (XCCl3), CF3CCl3, CH3CCl3, C2Cl6, C2Cl5H, and CH2ClCCl3, by radiolytically generated cyclohexyl radicals was studied in the liquid phase by a competitive method. The chlorine atom abstraction data were put on an absolute basis by comparing the rates of the metathetical reactions with the known rate of addition of cyclohexyl radicals to C2Cl4. The following Arrhenius parameters were obtained: The error limits are the standard deviations from least mean square Arrhenius plots. It is shown that the neighboring group effect on the rate of chlorine atom abstraction from the trichloromethyl groups can be correlated with Taft polar substituent constants.  相似文献   

19.
The occurrence and magnitude of secondary kinetic isotope effects in the gas phase has been determined for deuterium abstraction from the CD3 group in CD3CH2Cl, CD3CHDCl, and CD3CD2Cl by photochemically generated ground-state chlorine atoms. Over the temperature range 10–94°C a discernible “inverse” kinetic isotope effect is observed. Both the pre-exponential factors and activation energies decrease with deuterium substitution in the vicinal chloromethyl group. The opposing trends result in a net effect close to unity.  相似文献   

20.
A laser flash photolysis-resonance fluorescence technique has been employed to investigate the reactions of atomic chlorine with three alkyl bromides (R-Br) that have been identified as short-lived atmospheric constituents with significant ozone depletion potentials (ODPs). Kinetic data are obtained through time-resolved observation of the appearance of atomic bromine that is formed by rapid unimolecular decomposition of radicals generated via abstraction of a β-hydrogen atom. The following Arrhenius expressions are excellent representations of the temperature dependence of rate coefficients measured for the reactions Cl + CH(3)CH(2)Br (eq 1 ) and Cl + CH(3)CH(2)CH(2)Br (eq 2 ) over the temperature range 221-436 K (units are 10(-11) cm(3) molecule(-1) s(-1)): k(1)(T) = 3.73?exp(-378/T) and k(2)(T) = 5.14?exp(+21/T). The accuracy (2σ) of rate coefficients obtained from the above expressions is estimated to be ±15% for k(2)(T) and +15/-25% for k(1)(T) independent of T. For the relatively slow reaction Cl + CH(2)BrCH(2)Br (eq 3 ), a nonlinear ln k(3) vs 1/T dependence is observed and contributions to observed kinetics from impurity reactions cannot be ruled out; the following modified Arrhenius expression represents the temperature dependence (244-569 K) of upper-limit rate coefficients that are consistent with the data: k(3)(T) ≤ 3.2 × 10(-17)T(2)?exp(-184/T) cm(3) molecule(-1) s(-1). Comparison of Br fluorescence signal strengths obtained when Cl removal is dominated by reaction with R-Br with those obtained when Cl removal is dominated by reaction with Br(2) (unit yield calibration) allows branching ratios for β-hydrogen abstraction (k(ia)/k(i), i = 1,2) to be evaluated. The following Arrhenius-type expressions are excellent representations of the observed temperature dependences: k(1a)/k(1) = 0.85?exp(-230/T) and k(2a)/k(2) = 0.40 exp(+181/T). The accuracy (2σ) of branching ratios obtained from the above expressions is estimated to be ±35% for reaction 1 and ±25% for reaction 2 independent of T. It appears likely that reactions 1 and 2 play a significant role in limiting the tropospheric lifetime and, therefore, the ODP of CH(3)CH(2)Br and CH(3)CH(2)CH(2)Br, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号