首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the solutions defined for all time of the KPP equation ut = uxx + f(u),   0 < u(x,t) < 1, (x,t) ∈ ℝ2, where ƒ is a KPP‐type nonlinearity defined in [0,1]: ƒ(0) = ƒ(1) = 0, ƒ′(0) > 0, ƒ′(1) < 0, ƒ > 0 in (0,1), and ƒ′(s) ≤ ƒ′(0) in [0,1]. This equation admits infinitely many traveling‐wave‐type solutions, increasing or decreasing in x. It also admits solutions that depend only on t. In this paper, we build four other manifolds of solutions: One is 5‐dimensional, one is 4‐dimensional, and two are 3‐dimensional. Some of these new solutions are obtained by considering two traveling waves that come from both sides of the real axis and mix. Furthermore, the traveling‐wave solutions are on the boundary of these four manifolds. © 1999 John Wiley & Sons, Inc.  相似文献   

2.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

3.
Let X(t), 0≦t≦ 1, be a measurable Gaussian process with mean 0 and variance σ2(t) = EX2(t). Suppose that σ2(t) assumes a unique maximum value σ2 at a point τ [0,1]. Define Lu = mes(t: 0≦t≦1, X(t)>)Under appropriate conditions, there exists a function fσ(u) such that fσ(u) → ∞ for u ∞, and The function fσ and the constant δ > 0 are determined by the behavior of the function R(x) = mes(t: 0 ≦ t ≦ 1, σ2 - σ2(t) ≦ x) for x > 0.  相似文献   

4.
For any −1<m<0, positive functions f, g and u0≥0, we prove that under some mild conditions on f, g and u0 as R the solution uR of the Dirichlet problem ut=(um/m)xx in (−R,R)×(0,), u(R,t)=(f(t)|m|R)1/m, u(−R,t)=(g(t)|m|R)1/m for all t>0, u(x,0)=u0(x) in (−R,R), converges uniformly on every compact subset of R×(0,T) to the solution of the equation ut=(um/m)xx in R×(0,T), u(x,0)=u0(x) in R, which satisfies some mass loss formula on (0,T) where T is the maximal time such that the solution u is positive. We also prove that the solution constructed is equal to the solution constructed in Hui (2007) [15] using approximation by solutions of the corresponding Neumann problem in bounded cylindrical domains.  相似文献   

5.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

6.
We study a formation of patterns in Burgers-type equations endowed with a bounded but nonmonotonic dissipative flux: ut + f(u)x = ± νQ(ux)x, Q(s) = s/(1 + s2). Issues of uniqueness, existence, and smoothness of a solution are addressed. Asymptotic regions of a solution are discussed; in particular, classical and nonclassical traveling waves with an embedded subshock are constructed. © 1998 John Wiley & Sons, Inc.  相似文献   

7.
Let Ω denote an unbounded domain in ?n having the form Ω=?l×D with bounded cross‐section D??n?l, and let m∈? be fixed. This article considers solutions u to the scalar wave equation ?u(t,x) +(?Δ)mu(t,x) = f(x)e?iωt satisfying the homogeneous Dirichlet boundary condition. The asymptotic behaviour of u as t→∞ is investigated. Depending on the choice of f ,ω and Ω, two cases occur: Either u shows resonance, which means that ∣u(t,x)∣→∞ as t→∞ for almost every x ∈ Ω, or u satisfies the principle of limiting amplitude. Furthermore, the resolvent of the spatial operators and the validity of the principle of limiting absorption are studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

9.

Values of λ are determined for which there exist positive solutions of the 2mth order differential equation on a measure chain, (-1)m x ?2m (t)=λa(t)f(u(σ(t))), y? [0,1], satisfying α i+1 u ?21(0)+0, γ i+1 u ?21(σ(1))=0, 0≤im?1 with αi,βiii≥0, where a and f are positive valued, and both lim x-0+ (f(x)/x) and lim x-0+ (f(x)/x) exist.  相似文献   

10.
In this paper, we study orthogonal polynomials with respect to the inner product (f, g)S(N) =〈u, fg〉+∑m=1N λmu, f(m)g(m) 〉, where λm≥0 form=1,…,N, anduis a semiclassical, positive definite linear functional. For these non-standard orthogonal polynomials, algebraic and differential properties are obtained, as well as their representation in terms of the standard orthogonal polynomials associated withu.  相似文献   

11.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we consider the unboundedness of solutions of the following differential equation (φp(x′))′ + (p ? 1)[αφp(x+) ? βφp(x?)] = f(x)x′ + g(x) + h(x) + e(t) where φp(u) = |u|p? 2 u, p > 1, x± = max {±x, 0}, α and β are positive constants satisfying with m, nN and (m, n) = 1, f and g are continuous and bounded functions such that limx→±∞g(x) ? g(±∞) exists and h has a sublinear primitive, e(t) is 2πp‐periodic and continuous. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

14.
An Application of a Mountain Pass Theorem   总被引:3,自引:0,他引:3  
We are concerned with the following Dirichlet problem: −Δu(x) = f(x, u), x∈Ω, uH 1 0(Ω), (P) where f(x, t) ∈C (×ℝ), f(x, t)/t is nondecreasing in t∈ℝ and tends to an L -function q(x) uniformly in x∈Ω as t→ + ∞ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case, an Ambrosetti-Rabinowitz-type condition, that is, for some θ > 2, M > 0, 0 > θF(x, s) ≤f(x, s)s, for all |s|≥M and x∈Ω, (AR) is no longer true, where F(x, s) = ∫ s 0 f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable conditions on f(x, t) and q(x). Our methods also work for the case where f(x, t) is superlinear in t at infinity, i.e., q(x) ≡ +∞. Received June 24, 1998, Accepted January 14, 2000.  相似文献   

15.
We study the initial-boundary value problem for ?t2u(t,x)+A(t)u(t,x)+B(t)?tu(t,x)=f(t,x) on [0,T]×Ω(Ω??n) with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly strongly elliptic operators of order 2m, B(t) denotes a family of spatial differential operators of order less than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u. Furthermore, an energy estimate for u is given.  相似文献   

16.
We consider the nonnegative solutions to the nonlinear degenerate parabolic equation ut = (D(x, t)um − 1ux)xb(x, t)up with m > 1, 0 < p < 1, and positive D(x, t), b(x, t). After obtaining the uniqueness and Hölder regularity results, we investigate the dependence of such phenomena as extinction in finite time and instantaneous shrinking of the support on the behaviour of D(x, t) and b(x, t).  相似文献   

17.
The structure of nontrivial nonnegative solutions to singularly perturbed quasilinear Dirichlet problems of the form –?Δpu = f(u) in Ω, u = 0 on ?Ω, Ω ? R N a bounded smooth domain, is studied as ? → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and f(u)/up–1 = –∞. It is shown that there are many nontrivial nonnegative solutions with spike‐layers. Moreover, the measure of each spike‐layer is estimated as ? → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0,). Uniqueness of a solution with a boundary‐layer and many positive intermediate solutions with spike‐layers are obtained for ? sufficiently small. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This article deals with a class of nonlocal and degenerate quasilinear parabolic equation u t = f(u)(Δu + aΩ u(x, t)dx ? u) with homogeneous Dirichlet boundary conditions. The local existence of positive classical solutions is proved by using the method of regularization. The global existence of positive solutions and blow-up criteria are also obtained. Furthermore, it is shown that, under certain conditions, the solutions have global blow-up property. When f(s) = s p , 0 < p ≤ 1, the blow-up rate estimates are also obtained.  相似文献   

19.
In this article, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive polytropic filtration equation u t ?=?div(|?u m | p?2?u m )?+?aΩ u q (y,?t)dy with a, q, m?>?0, p?>?1, m(p???1)?R N (N?>?2). More precisely speaking, it is shown that if q?>?m(p???1), any non-negative solution with small initial data vanishes in finite time, and if 0?q?m(p???1), there exists a solution which is positive in Ω for all t?>?0. For the critical case q?=?m(p???1), whether the solutions vanish in finite time or not depends on the comparison between a and μ, where μ?=?∫?Ωφ p?1(x)dx and φ is the unique positive solution of the elliptic problem ?div(|?φ| p?2?φ)?=?1, x?∈?Ω; φ(x)?=?0, x?∈??Ω.  相似文献   

20.
In this paper, the boundedness of all solutions of the nonlinear differential equation (φp(x′))′ + αφp(x+) – βφp(x) + f(x) = e(t) is studied, where φp(u) = |u|p–2 u, p ≥ 2, α, β are positive constants such that = 2w–1 with w ∈ ?+\?, f is a bounded C5 function, e(t) ∈ C6 is 2πp‐periodic, x+ = max{x, 0}, x = max{–x, 0}. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号