首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants have been measured for the reactions of the sulfate radical, SO4˙?, with alkanes, alkenes, alcohols, ethers, and amines in 95% acetonitrile solution. The rate constants were in the range of 106 L mol?1 s?1 for the abstraction reactions and 107?109 L mol?1 s?1 for the addition and electron transfer reactions. These values are 20 to 80 times lower than those measured in aqueous solutions. Furthermore, the rate constants for the reactions of SO4˙? with the primary alcohols increase with the number of carbon atoms and then level off, in contrast to the behavior observed in aqueous solution, where the rate constant increases more sharply for the larger alcohols. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

3.
A procedure to calculate the quantum mechanical transition probability of a unimolecular primary chemical process, A?A + e? is investigated for the circumstance where A? and A have different numbers of vibrational and rotational degrees of freedom (one is linear, the other not). A procedure is introduced to deal with the coupling between the vibrational and rotational motions. The proposed method was applied to calculating the lifetimes of CO2˙? and N2O˙? in the gas phase. The geometry optimizations and frequency calculations for CO2, CO2˙?, N2O, and N2O˙? are performed at HF, MP2, and QCISD(T) levels with 6-31G* or 6–31+G* basis sets, in order to obtain reliable geometric and spectroscopic information on these systems. Lifetimes are calculated for several of the lower vibrational–rotational states of the anions, as well as for the Boltzmann distribution of states at 298 K. The lifetime of the lowest vibrational–rotational state of CO2˙?, is 1.03 × 10?4 s, and of the lowest vibrational state with rotational levels weighted by Boltzmann distribution at 298 K, 1.50 × 10?4 s. These values are in good agreement with the experimental number, 9.0 ± 2.0 × 10?5 s, and support the experimental evidence that CO2˙? was formed in its ground vibrational level by the techniques used. The lifetime of CO2˙? calculated with Boltzmann distribution over its vibrational and rotational levels at 298 K, is 1.51 × 10?5 s. There are no direct measurements of the lifetime of N2O˙?, but it was estimated to be greater than 10?4 s from experimental evidence. The predicted lifetimes of N2O˙?, at its lowest vibrational–rotational state (0 K) and lowest vibrational state with rotational levels weighted by the Boltzmann distribution at 298 K, are 238 and 19.1 s, respectively. The lifetime of N2O˙? at thermal equilibrium at 298 K is 6.66 × 10?2 s, indicating that electron loss from the excited vibrational states of N2O˙? is significant. This study represents the first theoretical investigation of CO2˙? and N2O˙? lifetimes. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

5.
The gas‐phase elimination kinetics of ethyl 2‐furoate and 2‐ethyl 2‐thiophenecarboxylate was carried out in a static reaction system over the temperature range of 623.15–683.15 K (350–410°C) and pressure range of 30–113 Torr. The reactions proved to be homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are expressed by the following Arrhenius equations: ethyl 2‐furoate, log k1 (s?1) = (11.51 ± 0.17)–(185.6 ± 2.2) kJ mol?1 (2.303 RT)?1; ethyl 2‐thiophenecarboxylate, log k1 (s?1) = (11.59 ± 0.19)–(183.8 ± 2.4) kJ mol?1 (2.303 RT)?1. The elimination products are ethylene and the corresponding heteroaromatic 2‐carboxylic acid. However, as the reaction temperature increases, the intermediate heteroaromatic carboxylic acid products slowly decarboxylate to give the corresponding heteroaromatic furan and thiophene, respectively. The mechanisms of these reactions are suggested and described. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 145–152, 2009  相似文献   

6.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

7.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

8.
Rate constants for the thermal cyclodimerization of α, β, β-trifluorostyrene (TFS) were determined in six solvents at 393°K. The products of this reaction were mixtures of roughly equal amounts of cis-trans isomers. The rate constants in 3 solvents, were calculated according to Arrhenius equation. In n-hexane, log A = 6.02±0.18, Ea= 19.5±0.3 kcal.mol?1; in glyme, logA = 5.31 ± 0.19, Ea= 18.0±0.3 kcal.mol?1; in methanol, IogA=4.93±0.13, Ea=17.1±0.3 kcal mol?1. All data are consistent with a stepwise radical mechanism, and our reaction in this solvent series obeys an isokinetic relationship, with β = 478°K.  相似文献   

9.
The pyrolysis kinetics of primary, secondary, and tertiary β-hydroxy ketones have been studied in static seasoned vessels over the pressure range of 21–152 torr and the temperature range of 190°–260°C. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are expressed by the following equations: for 1-hydroxy-3-butanone, log k1(s?1) = (12.18 ± 0.39) ? (150.0 ± 3.9) kJ mol?1 (2.303RT)?1; for 4-hydroxy-2-pentanone, log k1(s?1) = (11.64 ± 0.28) ? (142.1 ± 2.7) kJ mol?1 (2.303RT)?1; and for 4-hydroxy-4-methyl-2-pentanone, log k1(s?1) = (11.36 ± 0.52) ? (133.4 ± 4.9) kJ mol?1 (2.303RT)?1. The acid nature of the hydroxyl hydrogen is not determinant in rate enhancement, but important in assistance during elimination. However, methyl substitution at the hydroxyl carbon causes a small but significant increase in rates and, thus, appears to be the limiting factor in a retroaldol type of mechanism in these decompositions. © John Wiley & Sons, Inc.  相似文献   

10.
The combination of sensitive detection of formaldehyde by 174 nm absorption and use of ethyl iodide as a hydrogen atom source allowed direct measurements of the reaction H + CH2O → H2 + HCO behind shock waves. The rate constant was determined for temperatures from 1510 to 1960 K to be k2 = 6.6 × 1014 exp(?40.6 kJ mol?1/RT) cm3 mol?1 s?1 (Δ log k2 = ± 0.22) Considering the low uncertainty in k2, which accounts both for experimental and mechanism‐induced contributions, this result supports the upper range of previously reported, largely scattered high temperature rate constants. Vis–UV light of 174 nm was generated by a microwave N2 discharge lamp. At typical reflected shock wave conditions of 1750 K and 1.3 atm, as low as 33 ppm formaldehyde could be detected. High temperature absorption cross sections of CH2O and other selected species have been determined. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 374–386, 2002  相似文献   

11.
12.
Kinetic and spectrophotometric measurements made during the Fe3+ ion catalyzed decomposition of H2O2 have been analyzed using the computer simulation method. Improved values of the rate constants of the “complex scheme” and of the molar absorptivities ofthe intermediates were obtained: k3/KM = 4.94 M?1 min?1, k4 = 193 M?1 min?1, εI/KM = 52.3 M?2 cm?1, εII = 25.7 M?1 cm?1. The simulation revealed details of the reaction which were unavailable by other means and which explained several features of its kinetics. The total amount of O2 evolved in the reaction using [H2O2] ~ 10?2 M has been calculated and found to be nearly stoichiometric. O2 evolution experiments in this region cannot, thus, distinguish between the “complex mechanism” predicting nearly stoichiometric evolution of O2 and the “free radical mechanism” predicting exactly stoichiometricamounts of O2. There are discrepancies within the “free radical scheme” with regard to the correct values of the rate constants to fit the reactions of H2O2 both with Fe2+ and Fe3+ ions, as well as other reactions assumed to proceed via free radicals.  相似文献   

13.
The distonic ions HO+?CHCH2C˙H2 (1) and CH3C(?O+H)CH2C˙H2 (2) were directly generated, their decompositions characterized and their appearance energies determined by photoionization. Heats of formation derived from the appearance energies were 757 kJ mol?1 for 1 and 692 kJ mol?1 for 2. Deuterium labeling demonstrates that both ions decompose at low energies in the same ways as their isomers with the same skeletal structures, consistent with proposals that 1 and 2 are intermediates in the decompositions of those systems. Surprisingly, the values of the translational energy releases accompanying the formation of CH3CO+ and C2H5CO+ from 2 appear to be inversely proportional to the available excess energy. The 1,2-H-shift RC(?O+H)CH2C˙H2 → RC(?O+H)C˙HCH3 is compared to the corresponding, non-occurring 1,2-H-shift in alkyl free radicals.  相似文献   

14.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

15.
The bimolecular reactions in the title were measured behind shock waves by monitoring the O-atom production in COS? O2? Ar and CS2? O2? Ar mixtures over the temperature range between 1400 and 2200 K. A value of the rate constant for S + O2 → SO + O was evaluated to be (3.8 ± 0.7) × 1012 cm3 mol?1 s?1 between 1900 and 2200 K. This was connected with the data at lower temperatures to give an expression k2 = 1010.85 T0.52 cm3 mol?1 s?1 between 250 and 2200 K. An expression of the rate constant for CS2 + O2 → CS + SO2 was obtained to be k21 = 1012.0 exp(?32 kcal mol?1/RT) cm3 mol?1 s?1 with an error factor of 2 between 1500 and 2100 K.  相似文献   

16.
Absolute rate constants for the addition of the 2-hydroxy-2-propyl radical to 18 substituted alkenes (CH2 = CXY) were determined at (296 ± 1) K in 2-propanol by time-resolved electronspin-resonance spectroscopy. With alkene substitution the rate constants vary by more than 6 orders of magnitude. For 3,3-dimethyl-but-1-ene the temperature dependence is given by log k/M?1 · s?1 = 6.4 minus;; 19.1/Θ where Θ = 2.303 RT in kJ/mol?1. As shown by a good correlation with the alkene electron affinities, log k296/M?1 · s?1 = 6.46 + 1.71 · EA/eV (r = 0.930), 2-hydroxy-2-propyl is a very nucleophilic radical, and its addition rates are highly governed by polar effects. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The rate constants for the reaction of 2,6‐bis(trifluoromethanesulfonyl)‐4‐nitroanisole with some substituted anilines have been measured by spectrophotometric methods in methanol at various temperatures. The data are consistent with the SNAr mechanism. The effect of substituents on the rate of reaction has been examined. Good linear relationships were obtained from the plots of log k1 against Hammett σpara constants values at all temperature with negative ρ values (?1.68 to ?1.11). Activation parameters ΔH varied from 41.6 to 54.3 kJ mol?1 and ΔS from ?142.7 to ?114.6 J mol?1 K?1. The δΔH and δΔS reaction constants were determined from the dependence of ΔH and ΔS activation parameters on the σ substituent constants, by analogy with the Hammett equation. A plot of ΔH versus ΔS for the reaction gave good straight line with 177°C isokinetic temperature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 203–210, 2010  相似文献   

18.
Ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence electron correlation have been employed to examine the [C2H2O] potential energy surface. Four [C2H2O] isomers have been identified as potentially stable, observable ions. These are the experimentally well-known ketene radical cation, [CH2?C?O] (a), and the presently unknown ethynol radical cation, [CH2?C? OH] (b), the oxirene radical cation (c) and an ion resembling a complex of CO with [CH2], (d). The calculated energies of b, c and d relative to a are 189, 257 and 259 kJ mol?1, respectively. Dissociation of ions a and d is found to occur without reverse activation energy.  相似文献   

19.
Rate constants (k's) of the thermal cyclodimerization of ten meta-substituted trifluorostyrenes (m-Y-TFS's) have been measured in the temperature range 110–160°C. On the basis of these k's and the σmb values derived from 19F NMR data the spin-delocalization substituent constant σ˙m values of these ten meta-substituents have been calculated. The averaged σ˙m values are: m-Et, 0.09; m-t-Bu, 0.11; m-F, 0.03; m-Cl,?0.05; m-Br, 0.12: m-CF3, ?0.07; m-OMe, 0.10; m-NO2, ?0.002; m-CN, 0.11 and m-CO2Me, 0.08. Both the smallness of these values and the nonexistence of correlation between Hammett-Type polar σX and these σ˙m values support our belief that the σj?J approach is reliable and trustworthy.  相似文献   

20.
Azoethane was irradiated in the presence of carbon monoxide in the temperature range of 238 to 378 K. Kinetic parameters for the addition of ethyl radicals to carbon monoxide and for the decomposition of propionyl radicals were determined. The rate constants were found to be log k(cm3 mol?1 sec?1) = 11.19 - 4.8/θ and log k(sec?1) = 12.77 - 14.4/θ, respectively. Estimated thermochemical properties of the propionyl radical are ΔHf0 = -10.6 ± 1.0 kcal mol?1, S0 = 77.3 ± 1.0 cal K?1 mol?1, and D(C2H5CO? H) = 87.4 kcal mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号