首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The second-order M?ller-Plesset (MP2) and density functional theory (DFT) calculations have been carried out to investigate the structures and stabilities of hydrogen (H-) bonded 2-hydroxypyridine (2HP)/2-pyridone (2PY) dimeric forms as well as 2HP-2PY complexes. The results on single-point counterpoise (CP) correction of these complexes were compared against CP-optimized correction. The nature of the intermolecular contacts in the sense of normal H-bond or blue-shifting H-bond was determined on the basis of harmonic vibrational, atom-in-molecule (AIM), and natural bond orbital (NBO) analysis. A blue-shifting C-H...N H-bond was found and NBO analysis revealed a slight decrease in the population of the contacting sigmaC-H* antibonding orbital as the primary reason of the C-H contraction. Good correlations have been established between the interaction energies and the H-bond distances versus other characteristic H-bond parameters.  相似文献   

2.
The Fourier transform microwave spectra of the hydrated forms of the tautomeric pair 2-pyridinone/2-hydroxypyridine (2PO/2HP) have been investigated in a supersonic expansion. Three hydrated species, 2PO-H?O, 2HP-H?O, and 2PO-(H?O)?, have been observed in the rotational spectrum. Each molecular complex was confidently identified by the features of the 1?N quadrupole hyperfine structure of the rotational transitions. The presence of water affects the tautomeric equilibrium -N═C(OH)- ? -NH-C(═O)-, which is shifted to the enol form for the bare molecules 2PO/2HP but to the keto tautomer for the hydrated forms.  相似文献   

3.
A 1:1 hydrogen-bonded complex between 2-pyridone and formic acid has been characterized using laser-induced-fluorescence excitation and dispersed fluorescence spectroscopy in a supersonic jet expansion. Under the same expansion condition, the fluorescence signal of the tautomeric form of the complex (2-hydroxypyridine...formic acid) is absent, although both the bare tautomeric molecules exhibit well-resolved laser-induced-fluorescence spectra. Quantum chemistry calculation at the DFT/B3LYP/6-311++G** level predicts that in the ground electronic state the activation barrier for tautomerization from hydroxy to keto form in bare molecules is very large (approximately 34 kcal/mol). However, the process turns out to be nearly barrierless when assisted by formic acid, and double proton transfer occurs via a concerted mechanism.  相似文献   

4.
The saddle point for the proton transfer involved in the equilibrium 2-hydroxypyridine α 2-pyridone has been calculated in a 3-21G basis to be 206 kJ mol?1 above the lactim form, for a unimolecular mechanism. This barrier is estimated to be reduced to 46 kJ mol?1 in the self-associated dimer.  相似文献   

5.
6.
Summary A time-dependent coupled-cluster approach may be employed to describe dynamic processes of many-electron systems. Atomic properties, such as the frequency-dependent polarizability, can be treated as a response of the system described by the coupled-cluster expansion to an external radiation field. The major difficulty in the realization of such a formalism is to deal with dynamic pair functions. The procedure reported here is to simplify the full set of single- and pair-excitation expansion equations to a subset of equations which includes polarization and relaxation effects to all orders and is solved by using a complete set of discrete basis functions. Calculations of excitation energies and frequency-dependent electric dipole polarizabilities for helium are presented. Application of the procedure to calculate photoionization cross sections is discussed.  相似文献   

7.
8.
Glycine receptor substrates are molecules potentially involved in tautomerism phenomena. This study is expected to provide information that might help understand their intrinsic reactivities; such physicochemical data would allow us to establish predictive models in a search for better antagonists. Ab initio molecular orbital studies, using 3-21G and 6-31G * basis sets, are reported for the tautomeric equilibrium of 2-pyridone · H2O/2-hydroxypyridine · H2O. The geometry of the transition state has also been optimized. The results show the important effect of the water molecule through the formation of hydrogen bonds. This system will be used as a prototype for the design of antagonists of the glycine receptor, a potential site for the action of new antiepileptic drugs and compounds preventing ischemic brain damage. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The hydrogen-bonded complexes of the nucleobase mimic 2-pyridone (2PY) with seven different fluorinated benzenes (1-, 1,2-, 1,4-, 1,2,3-, 1,3,5-, 1,2,3,4-, and 1,2,4,5-fluorobenzene) are important model systems for investigating the relative importance of hydrogen bonding versus pi-stacking interactions in DNA. We have shown by supersonic-jet spectroscopy that these dimers are hydrogen bonded and not pi-stacked at low temperature (Leist, R.; Frey, J. A.; Leutwyler, S. J. Phys. Chem. A 2006, 110, 4180). Their geometries and binding energies D(e) were calculated using the resolution of identity (RI) M?ller-Plesset second-order perturbation theory method (RIMP2). The most stable dimers are bound by antiparallel N-H...F-C and C-H...O=C hydrogen bonds. The binding energies are extrapolated to the complete basis set (CBS) limit, , using the aug-cc-pVXZ basis set series. The CBS binding energies range from -D(e,CBS) = 6.4-6.9 kcal/mol and the respective dissociation energies from -D(0,CBS) = 5.9-6.3 kcal/mol. In combination with experiment, the latter represent upper limits to the dissociation energies of the pi-stacked isomers (which are not observed experimentally). The individual C-H...O=C and N-H...F-C contributions to D(e) can be approximately separated. They are nearly equal for 2PY.fluorobenzene; each additional F atom strengthens the C-H...O=C hydrogen bond by approximately 0.5 kcal/mol and weakens the C-F...H-N hydrogen bond by approximately 0.3 kcal/mol. The single H-bond strengths and lengths correlate with the gas-phase acid-base properties of the C-H and C-F groups of the fluorobenzenes.  相似文献   

10.
Employing separate cluster ansatz in time-independent and time-dependent wave-operators, coupled-cluster (CC) response theory is generalized to multireference (MR) expansion spaces. For state energies, this corresponds to the MR secular problem with an arbitrary similarity-transformed effective Hamiltonian, H˜=Ω−1 HΩ. The effective Hamiltonian can be generated via size-extensive CC methods. Thus the states in MR linear response theory (MRLRT) maintain the usual CC core-extensive properties. We have used the Gelfand unitary group basis of the spin-adapted configurations to construct the matrix of H˜ in the MR excitation space. As a preliminary application, the CC singles and doubles effective Hamiltonian is applied to excitation and photoionization energies of the CH+ and N2 molecules, and is compared with experimental results and results from other numerical procedures including conventional CC linear response theory (CC-LRT), MR and full configuration interaction (MRCI and FCI) methods. The numerical results indicate that MRLRT reproduces valence and external excited states quantitatively, combining the best features of CC-LRT and MRCI. Received: 2 July 1998 / Accepted: 28 August 1998 / Published online: 11 November 1998  相似文献   

11.
We present the parallel version of a previous serial algorithm for the efficient calculation of canonical MP2 energies (Pulay, P.; Saebo, S.; Wolinski, K. Chem Phys Lett 2001, 344, 543). It is based on the Saebo-Alml?f direct-integral transformation, coupled with an efficient prescreening of the AO integrals. The parallel algorithm avoids synchronization delays by spawning a second set of slaves during the bin-sort prior to the second half-transformation. Results are presented for systems with up to 2000 basis functions. MP2 energies for molecules with 400-500 basis functions can be routinely calculated to microhartree accuracy on a small number of processors (6-8) in a matter of minutes with modern PC-based parallel computers.  相似文献   

12.
The tautomerism and aromaticity of 44 neutral and the corresponding 60 protonated azapentalenes were studied. The tautomerism was based on the calculated relative energies of the different tautomers, from two to three and nine nitrogen atoms. The aromaticity was estimated from the NICS values of both rings of azapentalenes. The possible relationship between both properties was assessed. The calculation was carried out at the B3LYP/6-311++G∗∗ computational level. MEP and NBO analysis were carried out on the studied compounds.  相似文献   

13.
By isotopic replacement of the carbonyl carbon with 13C, the C?O stretching frequency was identified as the highest frequency strongly absorbing band in the 1550–1750 cm?1 region of the infrared spectra of several 3-substituted 4-hydroxycoumarins and 3-substituted 4-alkoxycoumarins. The compounds selected for study were either known to crystallize as the coumarin tautomeric form by x-ray diffraction studies or were congeners of such compounds. The carbonyl band varied from 1664 cm?1 in inter- or intramolecularly hydrogen bonded derivatives to 1718 cm?1.  相似文献   

14.
Oligonucleotides containing 2'-deoxyisoguanosine (1, iG(d)), 7-deaza-2'-deoxyisoguanosine (2, c(7)iG(d)), and its 7-halogenated derivatives 3 and 4 were synthesized on solid phase using the phosphoramidite building blocks 5-7. The hybridization properties of oligonucleotides were studied on duplexes with parallel and antiparallel chain orientation. It was found that the 7-halogenated nucleoside analogues 3 and 4 enhance the duplex stability significantly in both parallel (ps) and antiparallel (aps) DNA. Moreover, the halogenated nucleosides shift the tautomeric keto-enol equilibrium strongly toward the keto form, with K(TAUT) [keto]/[enol] approximately 10(4) coming close to that of 2'-deoxyguanosine (10(4)-10(5)), while the nonhalogenated 7-deaza-2'-deoxyisoguanosine 2 shows a K(TAUT) of around 2000 and the enol concentration of 1 is 10% in aqueous solution. Consequently, nucleosides 3 and 4 show a much better mismatch discrimination against dT than compound 1 or 2 in antiparallel as well as in parallel DNA. 3 and 4 are expected to increase the selectivity of base incorporation opposite to isoC(d) in the form of triphosphates or in the polymerase-catalyzed reaction in comparison to 1 or 2.  相似文献   

15.
We present details of our efficient implementation of full accuracy unrestricted open‐shell second‐order canonical Møller–Plesset (MP2) energies, both serial and parallel. The algorithm is based on our previous restricted closed‐shell MP2 code using the Saebo–Almlöf direct integral transformation. Depending on system details, UMP2 energies take from less than 1.5 to about 3.0 times as long as a closed‐shell RMP2 energy on a similar system using the same algorithm. Several examples are given including timings for some large stable radicals with 90+ atoms and over 3600 basis functions. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

16.
The synthesis of a tautomeric keto/enol mixture of o-nitrophenylpyruvic acid followed the acid hydrolysis of the azlactone of o-nitrobenzaldehyde was carried out. The structures of the two tautomeric forms were assigned by NMR spectroscopy. X-ray diffraction of a single crystal revealed that the crystalline form corresponds to the keto tautomer. Quantum mechanics calculations in the gas phase confirmed the experimental findings in solution.  相似文献   

17.
The technique of Fock space multireference coupled-cluster (FSMRCC) is applied for the first time to the correlated calculation of the energy and width of a shape resonance in an electron-molecule collision. The procedure is based upon combining a complex absorbing potential with FSMRCC theory. Accurate resonance parameters are obtained by solving a small non-Hermitian eigenvalue problem. The potential-energy curve of the (2)Pi(g) state of N2- is calculated using the FSMRCC and multireference configuration-interaction (MRCI) level of theories. Comparison with the single-determinant Hartree-Fock theory indicates that correlation effects are important in determining the behavior of the resonance state.  相似文献   

18.
《Chemical physics letters》1987,137(3):273-278
A recent fully linked multireference coupled-cluster method using an incomplete model space is applied to the direct calculation of the difference energies of formaldehyde. For the calculation of excitation energies (EE) use is made of a reference space composed of particle-hole excited configurations built from a set of active orbitals. Ionization potentials are obtained from a model space of singly ionized configurations. Results are compared with experiment and previous calculations.  相似文献   

19.
The conjugate residual with optimal trial vectors (CROP) algorithm is developed. In this algorithm, the optimal trial vectors of the iterations are used as basis vectors in the iterative subspace. For linear equations and nonlinear equations with a small-to-medium nonlinearity, the iterative subspace may be truncated to a three-dimensional subspace with no or little loss of convergence rate, and the norm of the residual decreases in each iteration. The efficiency of the algorithm is demonstrated by solving the equations of coupled-cluster theory with single and double excitations in the atomic orbital basis. By performing calculations on H(2)O with various bond lengths, the algorithm is tested for varying degrees of nonlinearity. In general, the CROP algorithm with a three-dimensional subspace exhibits fast and stable convergence and outperforms the standard direct inversion in iterative subspace method.  相似文献   

20.
The application of parallel processing techniques to molecular mechanics calculations is evaluated. Using the standard molecular mechanics package, MM2, four different parallel versions of the program are implemented in a four-processor computing environment. A set of 529 test structures is used to compare the efficiency of the parallel versions of MM2 to a standard serial version of the program. Statistics describing execution times and program execution cycles are gathered and analyzed. The effects of parallel processing overhead and computer system load are explored, and the practical utility of parallel processing in molecular mechanics is estimated. The results of these parallelization experiments indicate that for geometry optimizations requiring significant amounts of computing time an improvement in program execution speed approaching 50% is realizable. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号