首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidative cyclization of 5-(2-amino-5-methoxycarbonylphenyl)-substituted tricarbonyl[η4-cyclohexa-1,3-diene]iron complexes by air in protic medium provides the corresponding tricarbonyl[η4-4a,9a-dihydro-9H-carbazole]iron complexes. This procedure is applied to the total synthesis of the 3-methoxycarbonylcarbazole alkaloids mukonine and mukonidine.  相似文献   

2.
The transition-metal-carbonyl-induced cyclodimerization of 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene is strongly affected by substitution at C(1) While 5,6-dimethylidene-7-oxabicyclo[2.2.1]hept–2-ene-l-methanol ( 7 ) refused to undergo [4 + 2]-cyclodimerization in the presence of [Fe2(CO)9] in MeOH, 1-(dimethoxymethyl)-5,6-di-methylidene-7-oxabicyclo[2.2.1]hept-2-ene ( 8 ) led to the formation of a 1.7:1 mixture of ‘trans’ ( 19, 21, 22 ) vs. ‘cis’ ( 20, 23, 24 ) products of cyclodimerization together with tricarbonyl[C, 5,6, C-η-(l-(dimethoxymethyl)-5,6-di-methylidenecyclohexa-1,3-diene)]iron ( 25 ) and tricarbonyl[C,3,4, C-η-(methyl 5-(dimethoxymethyl)-3,4-di-methylidenecyclohexa-1,5-diene-l-carboxylate)]iron ( 26 ). The structures of products 19 and of its exo ( 21 ) and endo ( 22 ) [Fe(CO)3(1,3-diene)]complexes) and 20 (and of its exo ( 23 ) and endo (24) (Fe(CO)3(1,3-diene)complexes) were confirmed by X-ray diffraction studies of crystalline (1RS, 2SR, 3RS, 4RS, 4aRS, 9aSR)-tricarbonyl[C, 2,3, C-η-(1,4-epoxy-1,5-bis(dimethoxymethyl])-2,3-dimethylidene-1,2,3,4,4a,9,9a,10-octahydroanthracene)iron ( 21 ). In the latter, the Fe(CO)3(1,3-diene) moiety deviates significantly from the usual local Cs symmetry. Complex 21 corresponds to a ‘frozen equilibrium’ of rotamers with η-alkyl, η3-allyl bonding mode due to the acetal unit at the bridgehead centre C(1).  相似文献   

3.
The first adducts of NHCs (=N-heterocyclic carbenes) with aromatic polyphosphorus complexes are reported. The reactions of [Cp*Fe(η5-P5)] ( 1 ) (Cp*=pentamethyl-cyclopentadienyl) with IMe (=1,3,4,5-tetramethylimidazolin-2-ylidene), IMes (=1,3-bis(2,4,6-trimethylphenyl)-imidazolin-2-ylidene) and IDipp (=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene) led to the corresponding neutral adducts which can be isolated in the solid state. However, in solution, they quickly undergo a dissociative equilibrium between the adduct and 1 including the corresponding NHC. The equilibrium is influenced by the bulkiness of the NHC. [Cp′′Ta(CO)24-P4)] (Cp′′=1,3-di-tert-butylcyclopentadienyl) reacts with IMe under P atom abstraction to give an unprecedented cyclo-P3-containing anionic tantalum complex. DFT calculations shed light onto the energetics of the reaction pathways.  相似文献   

4.
The addition of reactive carbanions to tricarbonyl(η4-1,3-diene)iron(0) complexes proceeded at ?78 °C to give putative tricarbonyl(η12-but-3-en-1-y1)iron(0) anion complexes and at 25 °C to produce postulated tricarbonyl(η3-allyl)iron(O) anion complexes; trapping of reactive intermediates with dioxygen produced γ,δ-unsaturated acids and allylic alcohols, respectively.  相似文献   

5.
The addition of reactive carbanions to tricarbonyl(η4-1,3-diene)iron(0) complexes proceeded at 23°C to give putative tricarbonyl(η3-allyl)iron(0) anion complexes. Trapping of the reactive intermediates with bromine produced nucleophilic-substituted tricarbonyl(η4-1,3-diene)iron(0) complexes.  相似文献   

6.
Reaction of lithium diisopropylamide (LDA) with (η4-1,3-cyclohexadiene)Fe(CO)3 complexes bearing functionalized side chains at C-5, under an atmosphere of carbon monoxide, gives bridged bicyclo[3,2,1]octene and bicyclo[3,3,1]nonene systems after electrophilic quenching. Under the same reaction conditions, intramolecular cyclization of acyclic (η4- 1,3-butadiene)Fe(CO)3 complexes with functionalized side chains at the terminal position of the diene ligands furnishes fused bicyclo[3.3,0]octanone and bicyclo[4.3.0]nonanone derivatives after acid quenching. The addition of a variety of the highly functionalized zinc-copper reagents RCu(CN)ZnI to the (η7-cycloheptatrienyl)Cr(CO) gives (η6-cyclohepta-1,3,5-triene)Cr(CO)3 complexes with a functionalized side-chain at the C-7 position of the ring. Intramolecular cyclization of ester-subsbtuted adducts using lithium diisopropylamide generates fused bicyclo[5.3.0]decane and bicyclo[5.4.0]undecane derivatives. The addition of a variety of the highly functionalized zinc-copper reagents RCu(CN)Znl to the (η4-cyclohexa-1,3-diene)Mo(CO)2(Cp) at the terminus of the coordinated diene ligand gives [Mo(π-allyl)(CO)2(Cp)](Cp = cyclopentadienyl) complexes with the functionalized side-chain at the C-4 position of the ring. Intramolecular cyclization of the (π-allyl)molybdenum complex containing a pendant propanoic acid unit generates the δ-lactone derivative.  相似文献   

7.
Synthesis of the heterocyclic skeletons of some biologically active compounds from (η6-o-dichlorobenzene)(η5-cyclopentadienyrl)iron hexafluorophosphate in a two step procedure is described. Cyclopentadienyliron hexafluorophosphate complexes of 1,4-benzodioxino[2,3-b]pyridine, 1,4-benzoxathiino[3,2-b]pyridine, 10H-pyrido[3,2-b]benzoxazine, benzo[b]naphtho[2,3-e][1,4]dioxin, 4-methylbenzo[b]benzopyran-2-one[7,6-e][1,4]dioxin and benzo[b]anthracen-9,10-diono[1,2-e][1,4]dioxin were isolated and characterized. Upon pyrolytic sublimation of these complexes the free heterocycles were obtained and characterized. (η6-1,4-Benzoxathiino[3,2-b]pyridine)(η5-cyclopentadienyl)iron hexafluorophosphate crystalizes in the orthothombic system, space group Pbca; the dihedral angle between the planes of outer rings was found to be 176.8 (1).  相似文献   

8.
The complexes [{(η 6-arene)Ru(μ-Cl)Cl}2] (arene?=?p-cymene (1), hexamethylbenzene reacts at low temperature with the arylazoimidazole (RaaiR′) ligands 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et) to give complexes of the type [(η 6-arene)RuCl(RaaiR′)]+. The complexes were characterized by FTIR and 1H NMR and 13C {1H} NMR spectroscopy. The molecular structure of [(η 6-p-cymene)RuCl(Me-C6H4-N=N-C3H2N2-1-CH3)]PF6 was established by single-crystal X-ray diffraction methods.  相似文献   

9.
Four cyclometalated diiridium complexes, with IrCp*Cl (Cp*=η5-C5Me5) termini bridged by 1,4- and 1,3-bis(p-tolyliminoethyl)benzene ( 1 , 2 ), or 1,4- and 1,3-bis(2-pyridyl)benzene ( 3 , 4 ), were prepared and characterized by nuclear magnetic resonance (NMR) spectroscopy and single-crystal X-ray diffraction (complexes 1 , 2 , and 4 ). The two iridium centers in complexes 1 and 3 are thus bound at the central benzene ring in the para-position (trans-Ir2), whereas those in complexes 2 and 4 are in the meta-position (cis-Ir2). Cyclic voltammograms of all four complexes show two consecutive one-electron oxidations. The potential difference between the two anodic steps in 1 and 3 is distinctly larger than that for 2 and 4 . The visible–near-infrared (NIR)–short-wave infrared (SWIR) absorption spectra of trans-Ir2 monocations 1 + and 3 + are markedly different from those of cis-Ir2 monocations 2 + and 4 +. Notably, strong near-infrared electronic absorption appears only in the spectra of 1 + and 3 + whereas 2 + and 4 + absorb only weakly in the NIR-SWIR region. Combined DFT and TD-DFT calculations have revealed that (a) 1 + and 3 + (the diiridium-benzene trans-isomers) display the highest occupied spin-orbitals (HOSO) and the lowest unoccupied spin-orbital (LUSO) evenly delocalized over both molecule halves, and (b) their electronic absorptions in the NIR-SWIR region are attributed to mixed metal-to-ligand and ligand-to-ligand charge transfers (MLCT and LLCT). In contrast, cis-isomers 2 + and 4 + do not feature this stabilizing π-delocalization but a localized mixed-valence state showing a weak intervalence charge-transfer (IVCT) absorption in the SWIR region.  相似文献   

10.
The reaction of 2-[(dicarbonyl)(η5-cyclopentadienyl)iron]acetaldehyde with organolithium and Grignard reagents results in efficient addition to the aldehyde carbonyl. The intermediate alkoxides have been treated with tetrafluoroboric acid to give high yields of isolated η2-alkene complexes of the dicarbonyl(η5-cyclopentadienyl)iron cation. Using this procedure the following alkenes were produced as complexed ligands to iron in 50–90% yield: propene, 1-hexene, 3-methyl-1-pentene, 3,3-dimethyl-1-butene, 1,3-butadiene, and styrene.  相似文献   

11.
The sandwich complexes bis(η6-naphthalene)molybdenum(0) ( 1 ), bis(η6-1-methylnaphthalene)molybdenum(0) ( 2 ), and bis(η6-1,4-dimethylnaphthalene)molybdenum(0) ( 3 ) are synthesized by cocondensation of Mo-atoms with the naphthalene ligands. Complexes 1–3 are also obtained by reduction of MoCl5 or MoCl4. 2THF with highly activated Mg in the presence of the naphthalene ligands. Mg was activated by sublimation of the metal in a simple rotating solution reactor. Complex 2 exists as a mixture of regio- and stereoisomers. Three regioisomers, 3a–c , are formed in reactions of Mo-atoms with 1,4-dimethylnaphthalene, whereas 3a , the isomer with the Mo-atom coordinated to the unsubstituted rings, is formed selectively via the reductive method. The ligands in 1–3 are highly labile. CO displaces both naphthalene rings in 2 and 3 to give [Mo(CO)6], while PF3, P(OMe)3, and PMe3 displace only one coordinated naphthalene in 1 to yield the [Mo(η6-naphthalene)L3] complexes 4–6 . In toluene, arene exchange is a competitive process in reactions of 1 with PF3. Complexes 5 (L = P(OMe)3) and 6 (L = PMe3) react with HBF4 to give the cationic metal hydride complexes 8 and 9 . The X-ray crystal structures of [Mo(η6-naphthalene) {P(OMe)3}3] ( 5 ) and [Mo(H)(η6-naphthalene) {P(OMe)3}3][BF4] ( 8 ) are reported.  相似文献   

12.
The reaction of different metallocene fragments [Cp2M] (Cp=η5‐cyclopentadienyl, M=Ti, Zr) with diferrocenylacetylene and 1,4‐diferrocenylbuta‐1,3‐diyne is described. The titanocene complexes form the highly strained three‐ and five‐membered ring systems [Cp2Ti(η2‐FcC2Fc)] ( 1 ) and [Cp2Ti(η4‐FcC4Fc)] ( 2 ) (Fc=[Fe(η5‐C5H4)(η5‐C5H5)]) by addition of the appropriate alkyne or diyne to Cp2Ti. Zirconocene precursors react with diferrocenyl‐ and ferrocenylphenylacetylene under C? C bond coupling to yield the metallacyclopentadienes [Cp2Zr(C4Fc4)] ( 3 ) and [Cp2Zr(C4Fc2Ph2)] ( 5 ), respectively. The exchange of the zirconocene unit in 3 by hydrogen atoms opens the route to the super‐crowded ferrocenyl‐substituted compound tetraferrocenylbutadiene ( 4 ). On the other hand, the reaction of 1,4‐diferrocenylbuta‐1,3‐diyne with zirconocene complexes afforded a cleavage of the central C? C bond, and thus, dinuclear [{Cp2Zr(μ‐η12‐C?CFc)}2] ( 6 ) that consists of two zirconocene acetylide groups was formed. Most of the complexes were characterized by single‐crystal X‐ray crystallography, showing attractive multinuclear molecules. The redox properties of 3 , 5 , and 6 were studied by cyclic voltammetry. Upon oxidation to 3 n+, 5 n+, and 6 n+ (n=1–3), decomposition occured with in situ formation of new species. The follow‐up products from 3 and 5 possess two or four reversible redox events pointing to butadiene‐based molecules. However, the dinuclear complex 6 afforded ethynylferrocene under the measurement conditions.  相似文献   

13.
The homoleptic 1,3-diphosphacyclobutadiene sandwich complex [Co(η4-1,3-P2C2tBu2)2] behaved as a versatile and highly flexible metalloligand toward Ni2+, Ru2+, Rh+, and Pd2+ cations, forming a range of unusual oligonuclear compounds. The reaction of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Ni2Cp3]BF4 initially afforded the σ-complex [CpNi{Co(η4-1,3-P2C2tBu2)2}(thf)] ( 2 ), which converted into [Co(η4-CpNi{1,3-P2C2tBu2PC})(η4-1,3-P2C2tBu2)] ( 3 ) below room temperature. The structure of 3 contains an unprecedented 1,4-diphospha-2-nickelacyclopentadiene moiety formed by an oxidative addition of a ligand P−C bond onto nickel. At elevated temperatures, 3 isomerized to [Co(η4-CpNi{1,4-P2C2tBu22P,P})(η4-1,3-P2C2tBu2)] ( 4 ), which features a 1,3-diphospha-2-nickelacyclopentadiene unit. Transmetalation of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Cp*RuCl]4 (Cp*=C5Me5) afforded tetranuclear [(Cp*Ru)3(μ-Cl)2{Co(η4-1,3-P2C2tBu2)2}] ( 5 ), in which the [Co(η4-1,3-P2C2tBu2] anion acts as a chelate ligand toward Ru2+. The diphosphido complex [(Cp*Ru)2(μ,η2-P2)(μ,η2-C2tBu2)] ( 6 ) was formed as a byproduct. Pure compound 6 was isolated after prolonged heating of the reaction mixture. The reaction of [K(thf)2{Co(η4-1,3-P2C2R2)2}] (R=tBu; adamantyl, Ad) with [RhCl(cod)]2 (cod=1,5-cyclooctadiene) afforded unprecedented π-complexes [Rh(cod){Co(η4-1,3-P2C2R2)2}] ( 7 : R=tBu; 8 : R=Ad), in which one μ:η44-P2C2R2 ligand bridges two metal atoms. The pentanuclear complex [Pd3(PPh3)2{Co(η4-1,3-P2C2tBu2)2}2] ( 10 ), featuring a Pd3 chain and a rare 1,4-diphospha-2-butene ligand, was synthesized by reacting [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with cis-PdCl2(PPh3)2. The redox properties of selected compounds were analyzed by cyclic voltammetry, whereas DFT calculations gave additional insight into the electronic structures. The results of this study revealed several remarkable and previously unrecognized properties of the [Co(P2C2tBu2)2] anion.  相似文献   

14.
Ru-atoms (0.5–1.5 g) have been generated by electron bombardment and, in separate experiments, were co-condensed at 7 K with excess of 2,3-dimethylbutadiene or 1,3- or 1,4-cyclohexadiene. The complexes Ru(CO)(η4-C6H10)2 ( 1 ) and Ru(CO)(η4-C6H8)2 ( 2 ), respectively, have been isolated in 25–30% yields on warming the condensate under CO.  相似文献   

15.
The structure and fluxionality of the trihydridodiene complexes (Ph3P)2(η-1,3-<di-ene)ReH3 have been studied by NMR spectroscopy (η-1-3-diene = buta-1,3-diene, 2-methylbuta-1,3-diene, 2,3-dimethylbuta-1,3-diene, cyclohexa-1,3-diene, penta-1,3-diene, hexa-1,3-diene and hexa-2,4-diene). Several rearrangement processes have been observed; they are, in order of increasing temperature: (a) ligand interchange; (b) reversible migration of a hydride ligand on to the diene ligand, leading to η-allyl species and, in the case of the cyclohexadiene trihydride, degenerate isomerisation of the cyclohexadiene moiety; and (c), in the case of the pentadiene and hexadiene derivatives, isomerisation of the diene ligand.  相似文献   

16.
A series of molecular homo and heteroleptic zinc and magnesium compounds with aminophenolate ligands [(µ,η2-L2)ZnEt]2 ( 1 ), [(η2-L2)Zn(µ-BnO)]2 ( 2 ), [Zn(η2-L2)2] ( 3 ), [Zn(η2-L3)2] ( 4 ), [Mg(η2-L3)2] ( 5 ) (L2-H = N-[methylene(2-hydroxy-3,5-di-tert-butylphenyl)]-N-methyl-N-cyclohexylamine, L3-H = N-[methylene(2-hydroxy-3,5-di-tert-butylphenyl)]-N-methyl-N-methyl-1,3-dioxolaneamine) have been prepared and characterized. The homoleptic complexes 3–5 are most probably a mixture of diastereoisomers that in solution show an interesting dynamics which plays an important role in their catalytic behavior. The complexes 2 – 5 are efficient initiators in ring-opening polymerization (ROP) of lactides to produce polymers with desired molecular weight and narrow polydispersity.  相似文献   

17.
New hexamethylated ferrocene derivatives containing thioether moieties (1,1′-bis[(tert-butyl)thio]-2,2′,3,3′,4,4′-hexamethylferrocene ( 3a , b )) or fused S-heteropolycyclic substituents (rac-1-[(1,3-benzodithiol- 2-yliden)methyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 5 ) and rac-1-[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 14 )), as well as a series of ferrocene-substituted vinylogous tetrathiafulvalenes (1,1′-bis[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 6a ), 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 6b ), [1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21a ), [1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21b ), [1,2-bis(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21c ), [1-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)-2-(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21d )) were prepared and fully characterized. Their redox properties show that some of them are easily oxidized and undergo transformation to paramagnetic salts containing bis(maleonitriledithiolato)-metallate(III) anions [M(mnt)2] (M=Ni, Pt; bis[2,3-dimercapto-κS)but-2-enedinitrilato(2)]nickelate (1) or -platinate (1). The derivatives [ 3a ] [Ni(mnt)2] ( 26 ), [ 3a ] [Pt(mnt)2] ( 27 ), [Fe{(η5-C5Me4S)2S}] [Ni(Mnt)2] ( 28 ), [Fe{(η5-C5Me4S)2S}] [Pt(mnt)2] ( 29 ), [ 5 ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 30 ), [ 6a ] [Ni(mnt)2] ( 31 ), [ 6a ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 31a ), [ 6a ] [Pt(mnt)2] [ 32 ), and [ 6b ] [Ni(mnt)2] ( 33 ) were prepared and fully characterized, including by SQUID (superconducting quantum interference device) susceptibility measurements. X-Ray crystal-structural studies of the neutral ferrocene derivatives 6a , b , 21c , d , and 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-oxoethyl]ferrocene ( 23 ), as well as of the charge-transfer salts 26 – 28 , 30 , and 31a , are reported. The salts 28 and 30 display both a D+AAD+ structural motif, however, with a different relative arrangement of the [{Ni(mnt)2}2]2− dimers, thus giving rise to different but strong antiferromagnetic couplings. Salt 26 exhibits isolated ferromagnetically coupled [{Ni(mnt)2}2]2− dimers. Salt 27 displays a D+AD+A structural motif in all three space dimensions, and a week ferromagnetic ordering at low temperature. Salt 31a , on the contrary, shows segregated stacks of cations and anions. The cations are connected with each other in two dimensions, and the anions are separated by a 1,2-dichloroethane molecule.  相似文献   

18.
The synthesis and crystal structures of two dinuclear titanocene hydride complexes are reported. Both complexes, namely bis(η5‐(di‐para‐tolylmethyl)cyclopentadienyl)titanium hydride dimer, [(η5‐C20H19)2Ti(μ‐H)]2 ( 2a ), and bis(η5‐2‐adamantylcyclopentadienyl)‐titanium hydride dimer, [(η5‐C15H19)2Ti(μ‐H)]2 ( 2b ), are formed via activation of molecular hydrogen by the corresponding bis(η51‐pentafulvene)titanium complexes 1a and 1b at ambient temperatures and pressures in high yields. The hydride complexes 2a and 2b exhibit planar [Ti2H2] cores and, as a result of the heterolytic cleavage of molecular hydrogen, substituted Cp Ligands were formed during the reaction.  相似文献   

19.
A variety of mono- and bis[Fe(CO)34-diene)] complex with alky, CH2OH, CHO, COCH3, COOR, and CN substituents on the 1,3-diene system have been synthesized. Dienes with a (Z)-configuration terminal Me group show steric inhibition of metal complexation resulting in lower yields and formation of tetracarbonyl(η2-diene) and tricarbonyl(η4-heterodiene) complexes as additional products. Regioselective attack by C-nucleophiles at the carbonyl C-atoms of the functional group with or without concomitant 1,3 mogration of the Fe(CO)3 group was used to synthesize polyenes and isoprenoid building blocks as mono- or dinucliar Fe(CO)3 complexes. Wittig-Horner-type reactions of Fe(co)3-complexed synthons result in sterospecific formation of (E)-configurated olefins. The 1H-, 13C- and 57Fe-NMR spectra of olefinic and allylic organoiron complexes are reported, H,H,C,H, and C,C coupling constants have been evaluated and are analyzed in terms of the geometry of the coordinated diene. The results are corroborated by the crystal structure of tricarbonyl[3–6-η-((E)-6-methyl-3,5-heptadiene-2-one)]iron( 34 ) which shows an unusual distortion of the (CH3)2C = group, The 57Fe-NMR chemical shifts extend over the ranges of 0–600 ppm for [Fe(CO)34-diene)] complexes, 780–1710 ppm for [Fe(CO)43-allyl)] [BF4] and [FeX(CO)34-allyl)] complexes, and 1270–1690 ppm for [Fe(CO)34-enone)] complexes, relative to Fe(CO)5.  相似文献   

20.
29Si NMR studies on several iron and ruthenium carbonyl complexes containing silicon revealed that the complexes obtained from vinyldisilanes and nonacarbonyldiiron previously reported to be (η3-1-silapropenyl)tricarbon: iron compounds really are (η2-vinyldisilane)tetracarbonyliron complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号