首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first ionization potentials of 11 silylmethyl-substituted amines R3?nN(CH2Si(CH3)3)n as determined photoelectron spectroscopy range from 9.07 eV to 7.66 eV. The most easily ionized molecule, N(CH2Si(CH3)3)3, can also be oxidized with AlCl3 in H2CCl2 solution to its aminium radical cation. The ESR spectra recorded between 180 K and 310 K display a strong temperature dependence due to rotations around the >NCH2bonds.  相似文献   

2.
Zusammenfassung Die Infrarot- und Ramanspektren von Ti[N(CH3)2]4 werden mitgeteilt, zugeordnet und mit den Spektren der analogen Dimethylamino-Verbindungen von Si, Ge und Sn verglichen.
The IR and Raman spectra of Ti[N(CH3)2]4 are reported, assigned and compared with those of the Si, Ge and Sn analoga.
  相似文献   

3.
Synthesis, NMR Spectra and Structure of [(CH3)2Ga{μ‐P(H)Si(CH3)3}2Ga(CH3)2{μ‐P(Si(CH3)3)2}Ga(CH3)2] The title compound has been prepared in good yield by the reaction of [Me2GaOMe]3 (Me = CH3) with HP(SiMe3)2 in toluene (ratio 1 : 1,1) and purified by crystallization from pentane or toluene, respectively. This organogallium compound forms (Ga–P)3 ring skeletons with one Ga–P(SiMe3)2–Ga and two Ga–P(H)SiMe3–Ga bridges and crystallizes in the monoclinic space group C2/c. The known homologous Al‐compound is isotypic, both (MIII–P)3 heterocycles have twist‐conformations, the ligands of the monophosphane bridges have trans arrangements.  相似文献   

4.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

5.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

6.
[{(CH3)3Si}3C–Li–C{Si(CH3)3}3][Li · 3(OC4H8)] and {(CH3)3Si}3C–Li · O=C(Si(CH3)3)2, two New Adducts of Lithium Trisylmethanide Sublimation of (Tsi–Li) · 2 THF (Tsi = –C(Si(CH3)3)3) at 180 °C and 10–4 hPa gives (Tsi–Li) · 1.5 THF in very low yield. The X‐ray structure determination shows an almost linear [Tsi–Li–Tsi] anion connected by short agostic Li…C contacts with the threefold THF‐coordinated Li‐cation. Base‐free Tsi–Li, solved in toluene is decomposed by oxygen, forming the strawberry‐colored ketone O=C(SiMe3)2, which forms an 1 : 1 adduct with undecomposed Tsi–Li. The X‐ray structure elucidation of this compound is also discussed.  相似文献   

7.
Reaction of [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 with Neopentyllithium: Formation of {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2CMe3} ? [Li(TMEDA)2]⊕ The recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2 reacts with neopentyl lithium in the presence of TMEDA to give the stable {[(Me3Si)2CH]2Al? CH2? Al [CH(SiMe3)2]2CH2 · CMe3}? [Li(TMEDA)2]⊕ decomposing at 115°C. The aluminium atoms therein are not additionally bridged, but the new substituent is occupying a terminal position as detected by crystal structure determination. A compound is formed containing a saturated, fourfold coordinated neighbouring a formally unsaturated, threefold coordinated aluminium atom. Due to high sterical restrictions the Al? C bonds are lengthened up to 209.0(3) pm at the alanate site and the Al? C? Al angle in the methylene bridge is extraordinarily enlarged to 144.4(2)°.  相似文献   

8.
The Crystal Structure of Diethylaluminium Hypersilanide [(C2H5)2Al–Si{Si(CH3)3}3]2 [Et2Al–Hsi]2 (Et = C2H5, Hsi = –Si(SiMe3)3), prepared from [Et2AlCl]2 and equimolar amounts of base‐free Li–Hsi in n‐pentane, crystallizes in the triclinic space group P 1 with two independent dimers per unit cell. One of these molecules is disordered. The dimers consist of planar Al2C2‐skeletons with Al–C–Al bridging bonds of 212,9(2) and 221,2(2) pm, respectively, and with intramolecular C–H…Al contacts of 202(2) pm.  相似文献   

9.
The title compound has been prepared in good yield by the reaction of gallium trichloride with base‐free hypersilyl lithium (Li–Si(SiMe3)3, Me = CH3) in a 1 : 3 molar ratio. Ga(Si(SiMe3)3)3 is monomeric in solution and in the solid state. The compound has been characterized with NMR, IR and Raman techniques as well as by an X‐ray structure determination (planar GaSi3‐skeleton, monoclinic space group P21/c, Z = 4, d(Ga–Si) = 249,8 ± 0,2 pm).  相似文献   

10.
Germatranes bearing a ferrocenylalkoxyl moiety have been obtained by the reaction of HOGe(OCH2CH2)3N with various ferrocenyl alcohols. A convenient new synthesis method of FcCH2OGe(OCH2CH2)3N was reported. FcCH2OGe(OCH2CH2)3N was prepared in 93% yield when FcCH2OH reacted with HOGe(OCH2CH2)3N in chloroform at room temperature in the presence of molecular sieves (3 Å) as a dehydrating agent. All compounds were characterized by elemental analysis, 1H NMR and IR spectroscopy. The molecular structures of FcCH2OGe(OCH2CH2)3N and FcCH(CH3)OGe(OCH2CH2)3N have been determined by X‐ray diffraction. The antitumor activities of FcCH2OGe(OCH2CH2)3N and p‐FcC6H4CH2OGe(OCH2CH2)3N were determined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Vibrational Spectra and Force Constants of the Series OP(N(CH3)2)3 – OP(CH3)3 and SP(N(CH3)2)3 – SP(CH3)3 The vibrational spectra (IR and Raman) of the compounds of the title series are recorded and assigned to the normal vibrations. By a simplified force field the valence force constants are calculated and discussed. The results are compared with those of the NMR spectroscopy.  相似文献   

12.
The isomerisation of H2Os3(CO)10[CN(CH2)3Si(OEt)3] to HOs3(CO)10-[CN(H)(CH2)3Si(OEt)3] is accelerated by interaction with some oxides; both complexes afford HOs3(CO)10[CN(H)(CH2)3Si(OEt)3it-x(O)x] as oxide supported clusters.  相似文献   

13.
On the Chemistry of the Titanium(III) Complex [{(Me3Si)2N}2TiCH2SiMe2NSiMe3]. Insertion Reactions into the Ti–C Bond and Redox Reactions [Na(12-crown-4)2][{(Me3Si)2N}2TiCH2SiMe2NSiMe3] ( 1 ) reacts with CO and the isonitrile CNCy (Cy = Cyclohexyl) under insertion into the Ti–C bond. After rearrangement planar five-membered titana(III)-heterocycles TiOCSiN and TiNCSiN with exocyclic C=CH2 groups are formed. On the other hand, the insertion of CNBut leads to the primary insertion product [Na(12-crown-4)2][{(Me3Si)2N}2TiC(NBut)CCH2SiMe2NSiMe3] ( 4 ) forming a new Ti(III)–C-bond. With NOBF4 the anion of 1 can be oxydized to form the molecular complex [{(Me3Si)2N}2TiCH2SiMe2NSiMe3] ( 5 ), while with phenylacetylene redox disproportionation occurs, in the course of which the mixed ligand complex [Na(12-crown-4)2][{(Me3Si)2N}2Ti(NSiMe3)(CH2SiMe2C≡C–Ph)] ( 6 ) can be isolated. 6 and the insertion products [Na(12-crown-4)2][{(Me3Si)2N}2TiOC(CH2)SiMe2NSiMe3] ( 2 ) and [Na(12-crown-4)2][{(Me3Si)2N}2TiNCyC(CH2)SiMe2NSiMe3] ( 3 ) are characterized by crystal structure determinations.  相似文献   

14.
Reaction of R—N=CH—CH=N—R with [(CH3)3Al]2 affords the coordination product (CH3)3AlRN=CH—CH=NR (A) for R = 2,6-(CH3)2C6H3 and 2,4,6(CH3)3C6H2. For R = 4 ClC6H4, 4-CH3C6H4 and 4-CH3OC6H4, insertion takes place, giving the complexes (CH3)2AlRN—CH(CH3)—CH=N—R (B), in which Al is part of a five-membered chelate ring. Depending on the temperature both the addition and insertion products rearrange intramolecularly to the complexes (CH3)2-AlR—N—CH2—C(CH3)=N—R (C), in which Al is also part of a five-membered chelate ring. Reactions of the asymmetric (CH3)2HC—N=CH—C(CH3)=N—CH-(CH3)2 with [Al(CH3)3]2 also leads to an insertion product, (CH3)2AlRN-—CH(CH3)—C(CH3)=N—R (B') (R = (CH3)2CH), but there is no subsequent rearrangement in this case.A mechanism involving hydrogen migration is tentatively proposed to account for the observed isomerization, which increases in rate in the order:R = (CH3)3C>2,4,6-(CH3)3C6H2> 2,6-(CH3)2C6H3 (A → C)andR = 4-CH3OC6H4>4-CH3C6H4>4-ClC6H4 (B → C)Hydrolysis of isomer C gives the unknown imino amines R—NH—CH2-C(CH3)=N—R in quantitative yield.  相似文献   

15.
Treatment of the trigonal-bipyramidal complex {Re[N(CH2CH2S)3](CNCH2COOEt)} (1a) with LiOH in THF leads to ester hydrolysis and yields the complex {Re[N(CH2CH2S)3](CNCH2COOH)} (2). Attempts to hydrolyze the ester in 1a in the two-phase system toluene/concentrated hydrochloric acid proceeded under electrophilic attack at the isocyanide nitrogen atom and formation of the carbonyl complex {Re[N(CH2CH2S)3](CO)} (3). Complex 3 was also obtained by treatment of {Re[N(CH2CH2S)3][CNC(CH3)3]} (1b) with toluene/hydrochloric acid. The molecular structures of 1b and 3 were established by X-ray structure analysis.  相似文献   

16.
Treatment of N‐heterocyclic silylene Si[N(tBu)CH]2 ( 1 ) and [(η3‐C3H5)PdCl]2 in toluene led to the formation of the mononuclear complex (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl ( 3 ), the silicon analogue to N‐heterocyclic carbene complex (η3‐C3H5)Pd{C[N(tBu)CH]2}Cl ( 2 ). Complex 3 was characterized with 1H NMR and 13C NMR. Investigation shows that (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl is an active catalyst for Heck coupling reaction of styrene with aryl bromides.  相似文献   

17.
Chemical shift and scalar coupling constant information has been obtained from the 1H, 13C, 29Si and 119Sn NMR spectra of a series of compounds (CH3)3SnCH2M(CH3)3, where M = Sn, Ge, Si or C and with one or two CH3? (Sn) groups replaced by Cl, Br or I. The (CH3)3M and (CH3)3MCH2 groups appear to have opposite substituent effects on chemical shifts.  相似文献   

18.
Gamma irradiation damage centres in (CH3)3NHClO4, (CH3)3NHBF4 and [(CH3)4N]2ZnCl4 were investigated by electron paramagnetic resonance spectroscopy at room temperature. The centres were found to be (CH3)3N+. and the hyperfine structure parameters for methyl protons and the nitrogen nucleus were determined. The results indicated that the (CH3)3N+. radical wholly performs reorientational motions around its C3v axis in addition to the reorientatonal motions of the methyl groups around their C3v axes. These results were compared with the earlier studies on (CH3)3N+. radical and discussed. Low temperature measurements on the first two of the title compounds were assessed.  相似文献   

19.
The 1H, 13C, and 119Sn NMR data of seven stannabicycloundecanes of the type RSn(CH2CH2CH2)3N (1, R = Cl; 2 , R = Br; 3 , R = I; 4 , R = OH; 5 , R = SPh; 6 , R = Me; 7 , R = Sn(CH2CH2CH2)3N) are reported. From 1H NMR coalescence data at low temperature the free activation enthalpies for the racemisation of the bicyclo[3.3.3]skeleton were estimated to be 37 ± 1 kJ/mol. They are independent of the substituent R. However, it decreases when the tin atom is replaced by silicon for R = Me.  相似文献   

20.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号