首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal containing ZSM-5 can produce higher hydrocarbons in methane oxidation. Many researchers have studied the applicability of HZSM-5 and modify ZSM-5 for methane conversion to liquid hydrocarbons, but their research results still lead to low conversion, low selectivity and low heat resistance. The modified HZSM-5, by loading with tungsten (W), could enhance its heat resistant performance, and the high reaction temperature (800℃) did not lead to a loss of the W component by sublimation. The loading of HZSM-5 with tungsten and copper (Cu) resulted in an increment in the methane conversion as well as CO2 and C5 selectivities. In contrast, CO, C2-3 and H2O selectivities were reduced. The process of converting methane to liquid hydrocarbons (C5 ) was dependent on the metal surface area and the acidity of the zeolite. High methane conversion and C5 selectivity, and low H2O selectivity are obtained over W/3.0Cu/HZSM.  相似文献   

2.
Direct conversion of methane using a metal-loaded ZSM-5 zeolite prepared via acidic ion exchange was investigated to elucidate the roles of metal and acidity in the formation of liquid hydrocarbons. ZSM-5 (SiO2/A12O3=30) was loaded with different metals (Cr, Cu and Ga) according to the acidic ion-exchange method to produce metal-loaded ZSM-5 zeolite catalysts. XRD, NMR, FT-IR and N2 adsorption analyses indicated that Cr and Ga species managed to occupy the alllmlnum positions in the ZSM-5 framework. In addition, Cr species were deposited in the pores of the structure. However, Cu oxides were deposited on the surface and in the mesopores of the ZSM-5 zeolite. An acidity study using TPD-NH3, FT-IR, and IR-pyridine analyses revealed that the total number of acid sites and the strengths of the BrSusted and Lewis acid sites were significantly different after the acidic ion exchange treatment.Cu loaded HZSM-5 is a potential catalyst for direct conversion of methane to liquid hydrocarbons. The successful production of gasoline via the direct conversion of methane depends on the amount of aluminum in the zeolite framework and the strength of the BrSnsted acid sites.  相似文献   

3.
郑海涛  楼辉  郑小明 《催化学报》2004,25(4):255-256
 采用丙烷和甲烷混合物作为共反应物进行无氧芳构化反应. 在600 ℃,3000 h-1和甲烷/丙烷摩尔比为0.6的条件下,甲烷可以在6%Zn/HZSM-5分子筛催化剂上被有效地活化,甲烷的转化率可达32.4%,丙烷的转化率为89.5%,反应的主要产物为芳烃,其选择性达到89.7%. 甲烷与丙烷的摩尔比对芳烃产物的选择性有影响. 在没有丙烷参与时该催化剂在600 ℃下对甲烷转化没有活性. 推测是丙烷脱氢或裂解过程的中间产物活化了甲烷. 低碳烷烃对甲烷的活化可能是实现甲烷低温转化的一条有效途径.  相似文献   

4.
Despite the extensive research into the catalytic uses of zeolite-based catalysts, these catalysts have a limited useful lifetime because of the deactivating effect of coke production. This study looks at the use of Cerium (Ce) loaded HZSM-5 zeolite catalysts in the hydrocarbon and oxygenated chemical conversion from Chlorella Vulgaris microalgae crude oil. Characterization of structure, morphology, and crystallinity was performed after the catalysts were manufactured using the impregnation technique. Soxhlet extraction was carried out to extract the crude oil of microalgae. Transesterification reaction was used to produce algal hydrolyzed oil (HO), and the resulting HO was put to use in a batch reactor at 300 °C, 1000 rpm, 7 bars of nitrogen pressure, a catalyst to the algal HO ratio of 15% (wt. %), and a retention time of 6 h. To determine which Ce-loaded HZSM-5 catalysts would be most effective in converting algal HO into non-oxygenated molecules (hydrocarbons), we conducted a series of tests. Liquid product characteristics were analyzed for elemental composition, higher heating value (HHV), atomic ratios of O/C and H/C, and degree of deoxygenation (DOD%). Results were categorized into three groups: product yield, chemical composition, and carbon number distribution. When Cerium was added to HZSM-5 zeolite at varying loading percentages, the zeolite’s acid sites became more effective in facilitating the algal HO conversion. The results showed that 10%Ce/HZSM-5 had the greatest conversion of the algal HO, the yield of hydrocarbons, HHV, and DOD% (98.2%, 30%, 34.05 MJ/Kg, and 51.44%, respectively) among all the synthesized catalysts in this research. In conclusion, the physical changes seen in the textural characteristics may be attributed to Cerium-loading on the parent HZSM-5; nevertheless, there is no direct association between the physical features and the hydrocarbons yield (%). The primary impact of Cerium alteration of the parent HZSM-5 zeolite was to change the acidic sites required to boost the conversion (%) of the algal HO in the catalytic deoxygenation process, which in turn increased the hydrocarbons yield (%), which in turn increased the HHV and DOD%.  相似文献   

5.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

6.
The principal methods for the conversion of methane into useful chemical compounds are discussed. Promising methods include direct nonoxidative dehydrocondensation of methane to aromatic hydrocarbons, oxidative coupling of methane to ethylene, and partial oxidation of methane to oxygenates. In the case of the last reaction the proposed approach makes it possible to compare precisely the selective action of heterogeneous catalysts and to predict that a maximum yield will be obtained in a flow-type reactor with recycling.  相似文献   

7.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

8.
代伟  成有为 《化学教育》2007,28(11):1-2,F0003
2007年3月发生的厦门PX事件引发人们对PX工业生产的关注。介绍了与PX生产紧密联系的烃类液相催化氧化的MC工艺过程。  相似文献   

9.
The reaction mechanism of methanol conversion to hydrocarbons on HZSM-5 zeolite was studied. From the selectivity plots of products in an integral fixed-bed flow reactor, paraffins were classified as primary and secondary stable products, light olefins as primary unstable products, aromatics as primary and secondary unstable or stable products. The results of the 14C-labelled methanol reaction indicated that the C1–C5 surface intermediates generated by dimethyl ether / methanol equilibrium gave paraffins and olefins at 300°C. The concentration of intermediates and adsorbed methanol on ZSM-5 decreased with increasing temperature. The distribution of radioactivity showed that propylene played an important role in the autocatalysis of the reaction.  相似文献   

10.
制备了纳米(20~50 nm)HZSM-5催化剂, 用XRF, TEM和NH3-TPD等手段对催化剂进行了表征. 以正辛烷及苯和正辛烷混合物的转化为模型反应, 研究了单烃和混合烃在纳米HZSM-5催化剂上的转化行为, 考察了反应条件对产物分布的影响. 结果表明, 纳米HZSM-5沸石催化剂具有很强的烃类转化能力, 烃类通过芳构化、 异构化和烷基化等反应转化为高辛烷值的异构烷烃和芳烃, 产物中异构烷烃(C4~C6)和芳烃的质量分数超过90%. 直链烷烃转化为芳烃以生成苯环为主, 混合烃转化为芳烃以苯和小分子烃的烷基化为主. 控制反应条件可抑制苯和C+9芳烃的生成. 产物分析结果表明, 烃类在纳米HZSM-5催化剂上的裂解、芳构化和异构化等遵循正碳离子机理.  相似文献   

11.
在温度为210~300℃、压力为3~5 MPa、LHSV为0.5~1.5 h-1的条件下,用连续固定床反应器,考察了丁烯-2在HZSM-5上的齐聚反应.结果表明:丁烯-2在HZSM-5分子筛上的反应类型和产物中高碳烯烃的含量与温度、压力及空速有关.反应温度在300℃以下,反应产物主要是烯烃,其结构显示择形催化的特点.HZSM-5分子筛的酸性对齐聚反应的活性和选择性有一定影响,低硅铝比的HZSM-5有较高的活性和高碳烯烃的选择性.  相似文献   

12.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Bronsted acid sites in the formation of higher hydrocarbons. The oligomerization of olefins, dependent on the acidity of ZSM-5 zeolite, is an important step in the conversion of natural gas to liquid fuels. The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst. ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios. The FT-IR analysis revealed that the integrated framework aluminum band, non-framework aluminum band, and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated. The performance of the dealuminated zeolite was tested for ethylene oligomerization. The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion, but the gasoline selectivity was reduced compared to the performance  相似文献   

13.
Ethylene oligomerization using ZSM-5 zeolite was investigated to study the role of Broensted acid sites in the formation of higher hydrocarbons,The oligomeriztion of olefins,dependent on the acidity of ZSM-5 zeolite ,is an important step in the conversion of natural gas to liquied fuels,The framework Si/Al ratio reflects the number of potential acid sites and the acid strength of the ZSM-5 catalyst,ZSM-5 with the mole ratio SiO2/Al2O3 equal to 30 was dealuminated for different periods of time according to the acidic ion-exchange method to produce ZSM-5 with various Si/Al ratios,The FT-IR analysis revealed that the integrated framework aluminum band,non-framework aluminum band,and silanol groups areas of the ZSM-5 zeolites decreased after being dealuminated,The performanc of the dealuminated zeolite was tested for ethylene oligomerization.The results demonstrated that the dealumination of ZSM-5 led to higher ethylene conversion,but the gasoline selectivity was reduced compared to the performance of a ZSM-5 zeolite ,The characterization results revealed the amount of aluminum in the zeolitic framework,the crystallinity of the ZSM-5 zeolite,and the Si/Al ration affected the formation of Broensted acid sites,The number of the Broensted acid sites on the catalyst active sites is important in the olefin conversion to liquied hydrocarbons.  相似文献   

14.
离子液体中树脂催化转化果糖为5-羟甲基糠醛   总被引:2,自引:0,他引:2  
开发了以离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl)为溶剂, 固体酸离子交换树脂NKC-9为催化剂转化果糖为5-羟甲基糠醛的绿色工艺. 在此催化体系中, 100 ℃下反应10 min时5-HMF的产率达到78.0%, 其反应时间远远小于已有文献报道的长达数小时的反应时间. 在此催化体系中, 果糖起始浓度的增加对5-HMF产率影响不大, 因而此工艺同样适用于处理高浓度的果糖溶液. 离子液体[BMIM]Cl和树脂组成的催化体系可以循环使用, 经过9次重复使用后仍能保持稳定的催化活性.  相似文献   

15.
Oxidative coupling of methane (OCM) to ethylene and ethane is a futuristic process of great practical importance for the effective utilization of methane/natural gas. A brief summary of the work carried out at National Chemical Laboratory (Pune) for the development of catalyst and catalytic process for OCM, particularly addressing the major issues/limitations of the OCM process and efforts made to overcome the problems is presented. This review particularly covers the development of a number of highly active/selective and stable unsupported and supported (using commercial catalyst carriers) catalysts for the OCM process and also the process of improvements/modifications to overcome most of the limitations of OCM.  相似文献   

16.
Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure–performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.  相似文献   

17.
氟改性对纳米HZSM-5分子筛催化甲醇制丙烯的影响   总被引:1,自引:0,他引:1  
郭强胜  毛东森  劳嫣萍  卢冠忠 《催化学报》2009,30(12):1248-1254
 在比较了纳米和微米 HZSM-5 分子筛催化甲醇制丙烯反应性能的基础上, 对纳米 HZSM-5 分子筛进行了氟改性. 利用透射电镜、N2 吸附、X 射线衍射、氨程序升温脱附和吡啶吸附-红外光谱技术对改性前后的样品进行了表征, 并在常压、500 oC 和甲醇空速 (WHSV) 为 1.0 h–1 的反应条件下, 在连续流动固定床微型反应器上考察了其催化甲醇制丙烯的性能. 结果表明, 当氟含量<10% 时, 随氟含量的增加, 改性纳米 HZSM-5 分子筛的酸量减少, 酸强度降低, 从而使丙烯选择性和催化剂稳定性不断提高. 但过量 (15%) 氟的改性使纳米 HZSM-5 分子筛的酸量、比表面积和孔容均明显减小, 致使其稳定性反而降低. 在适量 (10%) 氟改性的纳米 HZSM-5 分子筛上, 丙烯选择性和维持甲醇完全转化的反应时间分别由原来的 30.1% 和 75 h 增加到 46.7% 和 145 h.  相似文献   

18.
In this paper the effect of catalyst and carrier in electric field enhanced plasma on methane conversion into C2 hydrocarbons was investigated. Methane coupling reaction was studied in the system of continuous flow reactor on Ni, MoO3, MnO2 catalysts and different ZSM-5 carriers. The per pass conversion of methane can be as high as 22%, the selectivity of ethylene can be as high as 23.8%, of acetylene 60.8%, of ethane 5.4% and of total C2 hydrocarbons was more than 90%. ZSM-5-25 was the better carrier and MnO2 was the better active component. The efficiency of energy was as high as 7.81%.  相似文献   

19.
采用脉冲微反色谱研究了噻吩在不同方法制备的四种纳米HZSM-5沸石催化剂上的催化转化,并利用色质联用技术对反应产物定性.结果表明,在370℃下,噻吩在各种催化剂上除了脱硫生成硫化氢以外,还生成少量2-甲基噻吩、3-甲基噻吩和苯并噻吩等新的硫化物.噻吩转化率和脱硫率受反应气氛和催化剂酸度影响很大.氢气气氛比氮气气氛有利于提高噻吩转化率和脱硫率.临氢作用的实质是气相中的分子氢被催化剂上的L酸活化向噻吩裂化脱硫反应供氢.通过改性适当降低催化剂上的B酸中心数量和强度,增加L酸的比例,有利于发挥临氢作用.  相似文献   

20.
将二氧化碳(CO2)催化加氢转化为具有高附加值的烃类化合物,既可减缓大气中CO2浓度的攀升速度,又符合可持续发展战略,对环境和社会均具有重要意义。本文综述了Fe基催化剂上CO2加氢制C2+烃的研究进展,着重介绍了反应路径及机理、催化剂研制及反应器设计,展望了CO2制烃的研究前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号