首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Left-right asymmetry of the angular distribution of prompt neutrons from 235U fission induced by polarized thermal neutrons was measured. This asymmetry is caused by the interference of the s and p waves in the input reaction channel and was found to be equal to b=(?5.8±1.4)×10?5.  相似文献   

3.
It is shown that the softening of the acoustic mode and the ensuing ferroelastic phase transition are due to the linear-quadratic interaction between the symmetric and antisymmetric deformations, which is presently neglected in the literature. An expression is obtained which can be used to predict the phase transition pressure if the initial elastic moduli are known.  相似文献   

4.
Experimental data obtained previously for the energy-angular distribution of neutrons originating from the fission of 252Cf (spontaneous fission) and 235U (thermal-neutron-induced fission) nuclei are analyzed, the angle being measured with respect to the direction of fission-fragment motion. A regularity common to all independent experiments is revealed: at an angle of about 90°, there exists an excess of neutrons (30% for 252Cf and 60% for 235U) that does not admit explanation within the model of neutron emission from fully accelerated fragments. Two possible explanations of this experimental fact—neutron emission during the acceleration process and the existence of an additional source of neutrons (predominantly, prescission neutrons)—are considered. It is shown that the latter conjecture describes the observed features for both nuclei more adequately. The total yield of prescission neutrons and their energy and angular distributions are determined.  相似文献   

5.
Prompt-fission-neutron multiplicities were measured for 238U(n,f) and 235U(n,f) from 0.4 to 200 MeV. The data are of great importance in connection with accelerator-coupled nuclear reactor systems incinerating actinides. We report that fission induced by 200 MeV neutrons produces approximately 10 more prompt neutrons than fission induced by reactor neutrons. Most neutrons are evaporated from the fission fragments and the prefission compound nucleus, as the preequilibrium emission of energetic neutrons accounts for a maximum of 15% of the prompt neutrons at 200 MeV.  相似文献   

6.
The time-of-flight technique was used to measure the mass and kinetic energy distribution of fragments from fission of233U,235U and239Pu, induced by thermal neutrons at the Grenoble High Flux Reactor. The data array is presented as equal probability lines in the high kinetic energy regions. The fluctuations observed in those experimental lines are explained by a static scission configuration model, in which the most important influence comes from the Coulomb interaction energy between the two fragments. The highest values of total kinetic energy are obtained for fragmentations with heavy fragmentsZ=50–52,N=80–82 and light fragmentsZ=40–42,N=60–64.  相似文献   

7.
8.
Measurements were performed of the ratio of ternary to binary fission (T/B) in 239Pu by neutrons in the energy region from 0.020 eV to 50 eV. The ternary and binary fission time-of-flight spectra were recorded at a 8.1 m flightpath at the Geel Linac with large gold-silicon surface-barrier detectors on both sides of a 1 mg/cm2 double-faced 239Pu target. From these time-of-flight spectra the ratios of the areas of the strongest isolated resonances in ternary and in binary fission were calculated; moreover in the region 0.02–1 eV ratios were calculated for about 40 zones throughout the spectrum. The T/B ratio does not vary significantly in the energy region below 1 eV; this is not the case in the region 1–50 eV, where the T/B value for the 15.5 eV resonance is significantly larger than for the other resonances. These T/B values seem to be correlated with the resonance spin J and with some other fission characteristics.  相似文献   

9.
The experimental data concerning scission (or prescission) neutrons are very contradictory—the relative part of these neutrons in the prompt fission neutrons varies from 1 to 35% owing to arbitrary assumptions made in different analyses. To solve this problem, we have used a new alternative method to search for the scission neutrons. We have found the left-right asymmetry of prompt-fission-neutron (PFN) emission caused by sp-wave interference in the entrance channel of the reaction and the P-odd asymmetry of the PFN emission caused by parity nonconservation at the exit channel of the fission process. Both effects cannot reside in PFN evaporated by excited fission fragments. The scission (or prescission) neutrons are responsible for these effects. The text was submitted by the authors in English.  相似文献   

10.
11.
Independent fission yields of88–91Br and138–141I produced in thermal neutron fission of235U were determined at the SOLIS on-line isotope separator. The measurements were made for the first time using a negative surface ionization integrated target-ion source.  相似文献   

12.
13.
The mean primary nuclear charges of fragments from thermal neutron fission of U235 as a function of initial mass in the range 88–105 have been determined from theK-ray energy spectra of the light fragments.K- rays were registered with an argon-methane filled proportional counter in coincidence with the pulses from a pair of semiconductor detectors for complementary fission fragments. The deviation of the mean primary charge of the fragments from the “unchanged charge density” value as compared to the density of the parent nucleus U236 was found to be 0.54±0.14 charge units independent of mass in the range 88–105. No closed shell effect on the mean primary charge was found. Within about 10?9 sec after fission aK-X ray yield of 0.057±0.012 per fission in the light fragment group was measured. The yields are nearly independant of mass in the range 88–95 corresponding to a value of 0.04 per fragment and increase up to 0.09 in the mass range 95–104, the relative accuracy being 3 to 4%.  相似文献   

14.
15.
Ternary fission induced by cold polarized neutrons was studied for the two isotopes 233U and 235U at the Institut Laue-Langevin in Grenoble, France. In particular two types of angular correlations between the spin of the incoming neutrons and the emission directions of both, the fission fragments (FF) and the ternary particles (TP), were investigated. For FF and TP detectors facing the target at right angles to the neutron beam, first, for longitudinally polarized neutrons a triple correlation between spin and the emission of outgoing particles was explored and, second, for transversally polarized neutrons parity violating asymmetries in the emission of FFs and TPs were analyzed. Nonzero expectation values for the triple correlation were oberserved in the present experiments for the first time.  相似文献   

16.
《Nuclear Physics A》1986,452(2):277-295
The mass spectrometer Lohengrin of the Institut Laue-Langevin in Grenoble was used to measure fission-fragment mass yields in the mass range 80 ≤ A ≤ 107 for light-fission-fragment kinetic energies up to about 115 MeV for the reactions 233,235U(nth, f). The kinetic energies corresponding to a common fixed yield level for each isobar reflect the influence of the proton pairing energy, but not of the neutron pairing energy. By using calculated Q-values for the different mass splits, mass distributions at fixed total excitation energy are deduced from the data. At a fixed total excitation energy of about 7 MeV, the yield increases from very asymmetric mass splits (AL ≈ 80) to more symmetric mass splits (AL ≈ 105) by more than two orders of magnitude. This strong dependence on the mass split seems to be correlated with the decreasing surface-to-surface distance of the unaccelerated fission fragments in this range of mass splits, as calculated under the assumption that the total Q-value is represented by the mutual Coulomb repulsion of the two fragments. The influence of the fission-fragment ground-state deformations on the yield in cold fragmentation could not be detected unambiguously.  相似文献   

17.
The emission spectra of prompt fission neutrons from mass and kinetic energy selected fission fragments have been measured in235U(n th,f). Neutron energies were determined from the measurement of the neutron time of flight using a NE213 scintillation detector. The fragment energies were measured by a pair of surface barrier detectors in one set of measurements and by a back-to-back gridded ionization chamber in the second set of measurements. The data were analysed event by event to deduce neutron energy in the rest frame of the emitting fragment for the determination of neutron emission spectra and multiplicities as a function of the fragment mass and total kinetic energy. The results are compared with statistical model calculations using shell and excitation energy dependent level density formulations to deduce the level density parameters of the neutron rich fragment nuclei over a large range of fragment masses.  相似文献   

18.
The fragment mass yields in fission of 235U induced by thermal neutrons for A = 145–160 and EK = 50–75 MeV were measured using a mass spectrometer. The fine structure is observed at A = 153, 154 and EK = 50–60 MeV. The obtained results were described in the framework of a model based on the dinuclear system concept. The analyzed correlation between the total kinetic energy and mass distribution of fission fragments is connected with the shell structure of the formed fragments of fission. From this correlation and the time dependence of the calculated mass distribution of the binary reaction products, one can conclude that the descent time from a saddle point to a scission point for the more deformed fragments is longer than that for fragments of more compact shape.  相似文献   

19.
Based on the neutron induced fission fragment mass distribution data up to  相似文献   

20.
Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号