首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photolysis and thermolysis of the Cyclopropyl silyl ketones 3, 4 , and 5 are described. On n,π* excitation, the silyl ketones 3 and 4 undergo a Norrish-type-II reaction involving γ-H abstraction, cyclopropyl ring cleavage followed by retro-enolization to the acylsilanes 6 and (E/Z)- 12 , respectively. As a common product of 3 and 4 , the dihydrofuran 7 is formed via the alternative C(α)-C(β) cleavage of the cyclopropyl moiety. Compounds 6 , 7 , and (E/Z)- 12 are new types of acylsilane photoproducts. The irradiation of acylsilane 5 gave the analogous dihydrofuran 15 as the only product. On photolysis of 3 and 4 , products 8A + B and 13A + B , derived from a siloxy carbene intermediate, were found as well. On thermolysis of 3 and 4 , the acylsilanes 6 (80%), and (E)- 12 (33%) and (Z)- 12 (34%), respectively, are formed as the only products. Their formation may occur via a [1, 5] sigmatropic H-shift. The thermolysis of 5 gave the diene 16 whose formation can be explained by insertion of a siloxycarbene into the neighboring cyclopropane leading to the cyclobutene 28 as thermally unstable intermediate.  相似文献   

2.
A series of enyne-allenes, with and without benzannulation at the ene moiety and equipped with aromatic and carbonyl groups as internal triplet sensitizer units at the allene terminus, was synthesized. Both sets, the cyclohexenyne-allenes and benzenyne-allenes, underwent thermal C(2)-C(6) cyclization exclusively to formal ene products. In contrast, the photochemical C(2)-C(6) cyclization of enyne-allenes provided formal Diels-Alder and/or ene products, with higher yields for the benzannulated systems. A raise of the temperature in the photochemical cyclization of enyne-allene 1b' led to increasing amounts of the ene product in relation to that of the formal Diels-Alder product. Laser flash photolysis at 266 and 355 nm as well as triplet quenching studies for 1b,b' indicated that the C(2)-C(6) cyclization proceeds via the triplet manifold. On the basis of a density functional theory (DFT) study, a short-lived transient (tau = 30 ns) was assigned as a triplet allene, while a long-lived transient (tau = 33 micros) insensitive to oxygen was assigned as fulvene triplet diradical. An elucidation of the reaction mechanism using extensive DFT computations allowed rationalization of the experimental product ratio and its temperature dependence.  相似文献   

3.
Prashant A. Waske 《Tetrahedron》2005,61(43):10321-10330
Various ring-fused cyclopropyl silyl ethers with an benzylic, olefinic or acetylenic side chain have been synthesized. Upon oxidative photoinduced electron transfer (PET) the cyclopropane ring opens and forms a reactive β-keto radical, which undergoes intramolecular cyclization. In some cases we observed only formation of ring opened non-cyclized products. With olefinic side chain 5-exo-trig mode of cyclization rather than 6-endo-trig mode of cyclization takes place whereas in case of acetylenic side chain we observed 6-endo cyclization.  相似文献   

4.
An extension of the well‐known ‘free‐radical‐clock’ methodology is described that allows one to determine the rate constants of carbon‐centered radicals with a variety of thiols by using the tris(trimethylsilyl)silane/thiol couple as a reducing system. A total of 20 rate constants for the hydrogen abstraction from a variety of alkyl‐, silyl‐, and aryl‐substituted thiols by the primary‐alkyl radical 2 in toluene at 80° were determined with the aid of the 5‐exo‐trig cyclization as a timing device. Further, seven rate constants for the hydrogen abstraction from a variety of alkyl‐ and silyl‐substituted thiols by the acyl radical 9 in benzene at 80° were measured using the decarbonylation process as a timing device. The rate constants varied over two orders of magnitude from 106 to 108 M ?1 s?1. Substituent effects were rationalized. The radical‐trapping abilities of these reducing systems and those of other common hydrogen donors were compared.  相似文献   

5.
4-[(Trimethylstannyl)diphenylsilyl]butanoyl radical, arising from the corresponding 3-(stannylsilyl)propyl radical and CO, undergoes an SHi reaction at Si with extrusion of trimethyltin radical to give silacyclopentanone. The parent 3-(stannylsilyl)propyl radical was also found to isomerize to (3-stannylpropyl)silyl radical via a 1,4-Sn shift from Si to C with a rate constant of 9.3 x 10(4) s-1 at 80 degrees C. Ab initio and DFT MO calculations support a front-side attack mechanism.  相似文献   

6.
Reductive photoinduced electron transfer (PET) reactions have been performed with various bicyclic alpha-cyclopropyl-substituted ketones and tertiary amines. The reaction resulted in a regioselective cleavage of one cyclopropyl bond under formation of an exocyclic radical with an endocyclic enolate unit. In the case of bicyclic ketones with an unsaturated side chain, various bicyclic, spirocyclic, and tricyclic products are accessible via radical cyclization, depending on the position of the alkenyl substituent. In addition to triethylamine, N-silylated amines have also been used as electron donors, leading to a variety of compounds, among them are silylated fragmentation products, indicating that a proton is transferred from not only the amine radical cation but also the cationic silyl group. The intramolecular Paternó-Büchi reaction has also been studied for cyclopropane derivatives of the jasmone type leading to tetracyclic oxetanes. Finally, alpha-epoxy-substituted ketones have been investigated under PET conditions, yielding ring-opened products.  相似文献   

7.
Whilst mono(silyl)triazenes R′N=N---NR′(SiR3) and organyl triazenes R′N=N---NR′2 are of comparable thermal stability and decay by a radical reaction, bis(silyl)triazenes R′N=N---N(SiR3)2 (R′=aryl, R=Me, Et, OMe) decompose at room temperature in a non-radical reaction to yield amines R′N(SiR3)2 and nitrogen. Kinetic investigations of the mechanism of the non-radical thermolysis of triazenes show that the rate of the thermolysis of R′N=N---N(SiR3)2 is determined both from an isomerisation equilibrium forming (R3Si)R′N---N=N(SiR3) and from the rate of decomposition of this compound to the thermolysis products. Tris(silyl)triazenes, (R3Si)2N---N=N(SiR3), hitherto not synthesized, are expected to be even more unstable than the bis(silyl)triazenes which have been examined by us.  相似文献   

8.
Computational studies at the BLYP/6-31G(d) level (supplemented by BCCD(T)/cc-pVDZ calculations) suggest that in aryl-substituted 1,2-diethynylbenzenes, steric effects disfavor the thermal C1-C6 diradical cyclization reaction (Bergman) and electronic effects favor the regiovariant C1-C5 cyclization to the extent that the C1-C5 process should become an important reaction pathway in the thermolyses of such compounds. Experimentally, thermolyses of 1,2-bis(2,4,6-trichlorophenylethynyl)benzene, a particularly favorable case, yields only products derived from C1-C5 cyclization [specifically, 1-(2,4,6-trichlorobenzylidene)-2-(2,4,6-trichlorophenyl)-1H-indene and its hydrogenation product 3-(2,4,6-trichlorobenzyl)-2-(2,4,6-trichlorophenyl)-1H-indene], and even for the parent hydrocarbon 1,2-bis(phenylethynyl)benzene, the formation of C1-C5 cyclization products is competitive with the major Bergman reaction. Although some C1-C5 cyclization products are probably formed by transfer hydrogenation from 1,4-cyclohexadiene (commonly included in such reactions), thermolyses in the absence of 1,4-CHD as well as deuterium labeling studies confirm the existence of direct C1-C5 diradical cyclizations for diaryl-substituted enediynes.  相似文献   

9.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

10.
3,7-Anhydro-D-glycero-D-ido-octitol 1,5,6-trisphosphate (5) was designed as a novel IP(3)-receptor ligand having a C-glycosidic structure and was synthesized via a radical cyclization reaction with a temporary connecting vinylsilyl tether as the key step. The phenyl 2-O-dimethylvinylsilyl-3,4, 6-tri-O-benzyl-1-seleno-beta-D-glucopyranoside (7), in the usual (4)C(1)-conformation, was successively treated with Bu(3)SnH/AIBN and under Tamao oxidation conditions to give a mixture of five C-glycosidic products. On the other hand, similar successive treatment of the corresponding 3,4-di-O-TBS-protected substrates 13 and 24, which were in an unusual (1)C(4)-conformaion due to the steric repulsion between the bulky silyl protecting groups, gave the desired 1alpha-C-glycosides 18 and 25, respectively, as the major products. Thus, the course of the radical cyclization was effectively controlled by a change in the conformation of the pyranose ring into a (1)C(4)-form due to steric repulsion between the adjacent bulky TBS-protecting groups at the 3- and 4-hydroxyl groups. From 25, the target 5 was synthesized via phosphorylation of the hydroxyls by the phosphoramidite method. The C-glycoside trisphosphate 5 has significant binding affinity for IP(3) receptor of calf cerebella.  相似文献   

11.
[reaction: see text] The reactions of (trans-2-phenylcyclopropyl)ethyne, 1a, (trans,trans-2-methoxy-3-phenylcyclopropyl)ethyne, 1b, and (trans,trans-2-methoxy-1-methyl-3-phenylcyclopropyl)ethyne, 1c, with either aqueous sulfuric acid or tris(trimethylsilyl)silane (or tributyltin hydride) and AIBN have been investigated. Protonation and addition of the silyl (or stannyl) radical occurred at the terminal position of the alkyne giving an alpha-cyclopropyl-substituted vinyl cation or radical, respectively. Under both reaction conditions, 1a yielded products derived from ring opening toward the phenyl substituent. Alkynes 1b and 1c, however, gave different products depending on whether radical or cationic conditions were used. When radical conditions were employed, products derived from regioselective ring opening toward the phenyl substituent were obtained. In contrast, when cationic conditions were employed, products derived from selective ring opening toward the methoxy substituent were isolated. The corresponding alpha-cyclopropyl-substituted vinyllithium derivatives were also synthesized and were found to be stable toward rearrangement. An estimate of the rate constants for ring opening of the alpha-cyclopropylvinyl cations was also made: values of 10(10)-10(12) s(-1) were found for the vinyl cations derived from protonation of the terminal carbon of alkynes 1a-c. Based on these results, cyclopropyl alkynes 1a-c can be classified as hypersensitive mechanistic probes for the detection of vinyl radical or cationic intermediates generated adjacent to the cyclopropyl ring and, in the case of 1b and 1c, the distinction between a radical or cationic intermediate is possible.  相似文献   

12.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

13.
[reaction: see text] The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(BioI) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.  相似文献   

14.
A 1:1 mixture of the platinum dimethyl diimine complex [PhN[double bond]C(Me)C(Me)[double bond]NPh]PtMe(2) (4a) and B(C(6)F(5))(3) catalyzed the cyclization/hydrosilylation of dimethyl dipropargylmalonate (1) and HSiEt(3) to form 1,1-dicarbomethoxy-3-methylene-4-(triethylsilylmethylene)cyclopentane (3) in 82% isolated yield with 26:1 Z:E selectivity. Platinum-catalyzed diyne cyclization/hydrosilylation tolerated a range of functional groups including esters, sulfones, acetals, silyl ethers, amides, and hindered ketones. Diynes that possessed propargylic substitution underwent facile cyclization/hydrosilylation to form silylated 1,2-dialkylidene cyclopentanes as mixtures of regioisomers. Diynes that possessed an electron-deficient internal alkyne underwent cyclization/hydrosilylation in moderate yield to form products resulting from silyl transfer to the less substituted alkyne. The silylated 1,2-dialkylidenecyclopentanes formed via diyne cyclization/hydrosilylation underwent a range of transformations including protodesilylation, Z/E isomerization, and [4 + 2] cycloaddition with dieneophiles.  相似文献   

15.
The complex marine alkaloid norzoanthamine (2) was envisioned to be assembled from three key building blocks: the C1-C5 fragment A, the C6-C10 fragment B, and the C11-C24 fragment C. The synthesis of fragment A was achieved in 14 steps and 33% overall yield from (R)-gamma-hydroxymethyl-gamma-butyrolactone. Fragment B was made in two steps from PMB-protected 4-pentynol in 76% yield. The C11-C24 fragment C was made from (S)-carvone via (R)-isocarvone in 18 steps (6% overall yield). The convergent stereoselective synthesis of the entire carbon framework (C1-C24) of the target molecule was achieved via the following assemblage. Alkenyl iodide 20 derived from the C11-C24 fragment C was coupled to fragment B (C6-C10) through a high-yielding Stille coupling reaction of these two sterically very demanding coupling partners, affording the key Diels-Alder precursor 24. The intramolecular Diels-Alder reaction proceeded smoothly in excellent yield and diastereoselectivity, generating the tricyclic trans-anti-trans perhydrophenanthrene motif of norzoanthamine (C6-C24). The final fragment coupling between lithiated fragment A (C1-C5) and aldehyde 40 (C6-C24) has also been successfully accomplished affording the entire carbon framework of the natural product.  相似文献   

16.
Kuo-Hsiang Tang 《Tetrahedron》2005,61(8):2037-2045
Radical cyclizations of acylsilanes with radicalphilic pendant introduced on silicon proceeded in a tandem fashion to give spiro products containing a cyclic silyl ether skeleton. Because the alkoxysilyl group can be replaced with a hydroxy group through oxidation, the spiro silyl ethers can be converted into diols. In the case with a radical intermediate carrying 2-oxa-3-sila-6-heptenyl skeleton, products derived from 1,7-endo cyclization were obtained in good yields.  相似文献   

17.
The general methods, photoinitiated or peroxide-initiated free radical chain additions of halomethanes to olefins, yield 1,2-addition products at temperatures ranging from 20 to 100 degrees C. At lower temperatures, -42 to -104 degrees C, a competitive reaction, subsequent to the addition of CCl(2)X(*), yields alkylcyclopropanes. The reactions of 1-octene or 1-hexene and 1-methylcyclohexene with atomic hydrogen carried out in the presence of several transfer agents (CCl(4), CCl(3)Br, CCl(2)Br(2)) initiate a radical chain addition of CCl(2)X(*) and yield cyclized materials resulting from the S(H)i displacement of halogen by a carbon-centered radical. The radical displacement of a halogen on carbon, the reverse of homolytic displacement on cyclopropyl carbon, is dominant at low temperatures. The rate constants for cyclization (k(c)) vs transfer with halomethane (k(t)) showed isokinetic temperatures of -46 degrees C (CCl(4), 1-hexene); -35 degrees C (CCl(4), 1-methylcyclohexene). The isokinetic temperatures for the reactions of the two substrates carried out in the presence of BrCCl(3) were calculated as -204 degrees C (1-octene) and -109 degrees C (1-methylcyclohexene).  相似文献   

18.
A new method for the synthesis of the octahydropyrrolo[3,2,1-ij]quinoline ring system that possesses the characteristic skeleton of the aspidosperma family of alkaloids has been developed. The method utilizes an intramolecular Diels-Alder reaction of an amido-substituted furan across a tethered indole pi-bond. To apply this strategy to the synthesis of the indole alkaloid spegazzinidine, it was necessary to address the problem of assembling the final D-ring of the pentacyclic skeleton. Radical cyclization of a model N-allyl-7-bromo-3a-methylhexahydroindolinone system was found to preferentially lead to the 6-endo-trig cyclization product, with the best yield being obtained under high dilution conditions. The six-membered cyclized product is generated through two reaction pathways: (a) 6-endo-trig ring closure and (b) rearrangement of an intermediate methylene-cyclopentyl radical obtained by 5-exo-trig cyclization. A number of related 7-bromo-substituted hexahydroindolinones containing tethered olefinic groups were prepared and found to undergo efficient cyclization under both radical and palladium-mediated reaction conditions. Vinyl radical cyclization with several N-butenyl-substituted systems afforded a mixture of 6-exo and 7-endo cyclization products. A protocol to introduce an ethyl substituent into the C20-position of the aspidospermidine skeleton was also developed.  相似文献   

19.
The results of kinetic, deuterium-labeling, and low-temperature NMR studies have established a mechanism for the palladium-catalyzed cyclization/hydrosilylation of dimethyl diallylmalonate (1) with triethylsilane involving rapid, irreversible conversion of the palladium silyl complex [(phen)Pd(SiEt(3))(NCAr)](+) [BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (4b) and 1 to the palladium 5-hexenyl chelate complex [(phen)Pd[eta(1),eta(2)-CH(CH(2)SiEt(3))CH(2)C(CO(2)Me)(2)CH(2)CH=CH(2)]](+) [BAr(4)](-) (5), followed by intramolecular carbometalation of 5 to form the palladium cyclopentylmethyl complex trans-[(phen)Pd[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)]+ [BAr4]- (6), and associative silylation of 6 to release 3 and regenerate 4b.  相似文献   

20.
A previously developed 1,8-hydrogen atom transfer (HAT) reaction promoted by 6-O-yl alkoxyl radicals between the two pyranose units in Hexp-(1→4)-Hexp disaccharides has been extended to other systems containing at least a furanose ring in their structures. In Penf-(1→3)-Penf (A) and Hexp-(1→3)-Penf (B) disaccharides, the 1,8-HAT reaction and concomitant cyclization to a 1,3,5-trioxocane ring are in competition with radical β-scission of the C4-C5 bond and formation of dehomologated products. The influence of the stereoelectronic β-oxygen effect on the β-scission and consequently on the 1,8-HAT reaction has been studied using the four possible isomeric d-furanoses. d-xylo- and d-lyxo-derivatives afforded preferentially 1,8-HAT products, whereas d-arabino- and d-ribo-derivatives gave exclusively direct β-scission of the alkoxyl radical. When the 6-O-yl radical is on a pyranose ring, as occurs in Penf-(1→4)-Hexp (C), it has been shown to provide the cyclized products exclusively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号