首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jen CP  Wu CY  Lin YC  Wu CY 《Lab on a chip》2003,3(2):77-81
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.  相似文献   

2.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

3.
《Electrophoresis》2017,38(9-10):1310-1317
In this paper, we investigate a novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump. The micromixer consists of thin film asymmetric pairs of electrodes on the microgrooved channel floor and array of electrode pairs fabricated on the top wall. By connecting electrodes with AC voltage, ACET forces are induced. Asymmetric microgrooved electrodes force the fluids along the channel, while lateral vortex pairs are generated by symmetric electrode pairs located on the top wall. Waviness of the floor increases contact area between two confluent streams within a narrow confinement. An active mixer operates as a semi active semi passive mixer. Effects of various parameters are investigated in details in order to arrive at an optimal configuration that provides for efficient mixing as well as appreciable transport. It is found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25% and flow rate of per unit width of the channel can be achieved.  相似文献   

4.
We propose a micromixer for obtaining better efficiency of vortex induced electroosmotic mixing of non-Newtonian bio-fluids at a relatively higher flow rate, which finds relevance in many biomedical and biological applications. To represent the rheology of non-Newtonian fluid, we consider the Carreau model in this study, while the applied electric field drives the constituent components in the micromixer. We show that the spatial variation of the applied field, triggered by the topological change of the bounding surfaces, upon interacting with the non-uniform surface potential gives rise to efficient mixing as realized by the formation of vortices in the proposed micromixer. Also, we show that the phase-lag between surface potential leads to the formation of asymmetric vortices. This behavior offers better mixing performance following the appearance of undulation on the flow pattern. Finally, we establish that the assumption of a point charge in the paradigm of electroosmotic mixing, which is not realistic as well, under-predicts the mixing efficiency at higher amplitude of the non-uniform zeta potential. The inferences of the present analysis may guide as a design tool for micromixer where rheological properties of the fluid and flow actuation parameters can be simultaneously tuned to obtain phenomenal enhancement in mixing efficiency.  相似文献   

5.
A novel fluid micromixer based on pneumatic perturbation and passive structures was developed. This micromixer facilitates integration and is applicable to fluid mixing over a wide range of flow rates. The microfluidic mixing device consists of an S-shaped structure with two mixing chambers and two barriers, and two pneumatic chambers designed over the S-shaped channel. The performance of the micromixer for fluids with wide variation of flow rates was significantly improved owing to the integration of the pneumatic mixing components with the passive mixing structures. The mixing mechanism of the passive mixing structures was explored by numerical simulation, and the influencing factors on the mixing efficiency were investigated. The results showed that when using a gas pressure of 0.26 MPa and a 100 m-thick polydimethylsiloxane (PDMS) pneumatic diaphragm, the mixing of fluids with flow rates ranging from 1 to 650 L/min was achieved with a pumping frequency of 50 Hz. Fast synthesis of CdS quantum dots was realized using this device. Smaller particles were obtained, and the size distribution was greatly improved compared with those obtained using conventional methods.  相似文献   

6.
Lim TW  Son Y  Jeong YJ  Yang DY  Kong HJ  Lee KS  Kim DP 《Lab on a chip》2011,11(1):100-103
In this study, we report a neo-conceptive three-dimensionally (3D) crossing manifold micromixer (CMM) embedded in microchannel. Fabricated by sequential processes of photolithography and two photon absorption stereolithography, this leads to a microfluidic system with a built-in micromixer in a site controlled manner. The effectiveness of CMM is investigated numerically and experimentally. Through the numerical simulation, it is estimated that a high mixing ratio of 90% can be obtained even in a channel length shorter than five times the channel width. This compares well with the conventional passive type of micromixers that have a gradual increase in mixing efficiency with the length of the channel. Furthermore, the mixing performance of the realized CMM built-in microchannel is observed by confocal microscopy.  相似文献   

7.
Fu LM  Yang RJ  Lin CH  Chien YS 《Electrophoresis》2005,26(9):1814-1824
This paper presents a novel technique in which low-frequency periodic electrokinetic driving forces are utilized to mix electrolytic fluid samples rapidly and efficiently in a double-T-form microfluidic mixer. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing the sample fluids which results in a simple and low-cost system for the mixing purpose. The effectiveness of the mixer as a function of the applied electric field and the periodic switching frequency is characterized by the intensity distribution calculated downstream from the mixing zone. The present numerical and experimental results confirm that the proposed double-T-form micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within a mixing length of 1000 microm downstream from the secondary T-junction when a 100 V/cm driving electric field strength and a 2 Hz periodic switching frequency are applied. The results reveal that the optimal switching frequency depends upon the magnitude of the main applied electrical field. The rapid double-T-form microfluidic mixer using the periodic driving voltage switching model proposed in this study has considerable potential for use in lab-on-a-chip systems.  相似文献   

8.
Current three-dimensional micromixers for continuous flow reactions and nanoparticle synthesis are complex in structure and difficult to fabricate. This paper investigates the design, fabrication, and characterization of a novel micromixer that uses a simple spatial Tesla valve design to achieve efficient mixing of multiple solutions. The flow characteristics and mixing efficiencies of our Tesla valve micromixer are investigated using a combination of numerical simulations and experiments. The results show that in a wide range of flow rates, viscoelastic solutions with different concentrations can be well mixed in our micromixer. Finally, experiments on the synthesis of chitosan nanoparticles are conducted to verify the practicability of our micromixer. Compared with nanoparticles prepared by conventional magnetic stirring, the size of nanoparticles prepared by micromixing is smaller and the distribution is more uniform. Therefore, our Tesla valve micromixer has significant advantages and implications for mixing chemical and biological reactions.  相似文献   

9.
Ultrafast active mixer using polyelectrolytic ion extractor   总被引:2,自引:0,他引:2  
Chun H  Kim HC  Chung TD 《Lab on a chip》2008,8(5):764-771
We report on a low voltage, straight/smooth surface, and efficient active micromixer. The mixing principle is based on alternative ion depletion-enrichment using a pair of positively charged polyelectrolytic gel electrodes (pPGEs), which face each other joined by a microchannel. This system has an external AC signal source electrically connected to the pPGEs via the respective 1 M KCl solutions and Ag/AgCl electrodes. When an electric bias is applied between the two pPGEs, anions are extracted through one of the pPGEs to create a local ion-deficient region. Simultaneously, an ion-rich area appears near the other pPGE due to an inward anionic flux. As the direction of the charge flow is periodically reversed by the AC signal source, the ion depletion-enrichment regions are alternately swapped with each other on the 'push-pull' basis. The turmoil between the pPGEs quickly mixes the solutions in the microchannel without any mechanical moving part or specially machined structures. In the proposed system, both AC frequency and current density can be easily and finely controlled so that one can quickly find the optimal conditions for a given sample. The micromixer as made showed a mixing efficiency higher than 90% for sample solutions of 1 mM Rhodamine 6G and PBS at pH 7.4 when the flow rate was under 6 mm s(-1). In addition to the solution-solution mixing, the micromixer can effectively mix suspended microparticles with solution. As a representative example, rapid and efficient lysis of human red blood cells was demonstrated allowing minimal damage of the white blood cells.  相似文献   

10.
Ghafouri S  Thompson M 《The Analyst》2001,126(12):2159-2167
The effect of electrode polarity, geometry, and stray capacitance on the performance of the thickness-shear mode acoustic wave sensor operating in electrolytes and solutions of biomolecules has been studied. In contrast to the well-known mass-based response of the device operating in the gas phase, the response in a liquid is governed by several factors including acoustoelectric and fringing field effects, which are known to be active at the edges of the electrodes. In order to investigate and utilize these effects, we modified the electrode geometry to increase the edge length, which, in turn, raises the sensitivity of the device. These changes which constituted either complete coverage of the back of the device with electrode material, or the removal of disks and lines from the electrode surface, resulted in a two to three times enhancement of sensor response. Such modifications that extend device sensitivity beyond the electrode area to the quartz region of the sensing structure also provide a better surface for the immobilization of various probes. We verified the enhancing ability of the modified electrodes for the case of adsorption of the protein avidin and neutravidin, followed by their affinity reactions with biotinylated biomolecules. It was found that the active electrode in contact with electrolyte exhibits a sensitivity of about twice that of the grounded electrode. The existence of stray capacitance around the cell was confirmed by shielding the cell assembly with a bath of concentrated KCl solution. This shielding effect was measured to be about 25-60 Hz in series resonant frequency and -1000 Hz in parallel resonant frequency.  相似文献   

11.
Wang Y  Lin Q  Mukherjee T 《Lab on a chip》2005,5(8):877-887
This paper presents a model for the efficient and accurate simulations of laminar diffusion-based complex electrokinetic passive micromixers by representing them as a system of mixing elements of relatively simple geometry. Parameterized and analytical models for such elements are obtained, which hold for general sample concentration profiles and arbitrary flow ratios at the element inlet. A lumped-parameter and system-level model is constructed for a complex micromixer, in which the constituent mixing elements are represented by element models, in such a way that an appropriate set of parameters are continuous at the interface between each pair of adjacent elements. The system-level model, which simultaneously computes electric circuitry and sample concentration distributions in the entire micromixer, agrees with numerical and experimental results, and offers orders-of-magnitude improvements in computational efficiency over full numerical simulations. The efficiency and usefulness of the model is demonstrated by exploring a number of laminar diffusion based mixers and mixing networks that occur in practice.  相似文献   

12.
The influence of interdigital multilamination micromixer characteristics on monomer conversions, molecular weights and especially on the polydispersity index of block copolymers synthesized continuously in two microtube reactors is investigated. The micromixers are used to mix, before copolymerization, a polymer solution with different viscosities and the second monomer. Different geometries of micromixer (number of microchannels, characteristic lengths) have been studied. It was found that polydispersity indices of the copolymers follow a linear relationship with the Reynolds number in the micromixer, represented by a form factor. Thus, beside the operating conditions (nature of the first block and comonomer flow rate), the choice of the micromixer geometry and dimension is essential to control the copolymerization in terms of molecular weights and polydispersity indices. This linear correlation allows the prediction of copolymer features. It can also be a new method to optimize existing micromixers or design other geometries so that mixing could be more efficient.  相似文献   

13.
Kim DS  Lee SH  Kwon TH  Ahn CH 《Lab on a chip》2005,5(7):739-747
Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number (Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other terms, lamination) mechanism is obtained by the successive arrangement of "F"-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.  相似文献   

14.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

15.
Microelectromechanical systems (MEMS) employing spatially and/or temporally nonuniform electric fields have been extensively employed to control the motion of suspended particles or fluid flow. Design and control of microelectromechanical processes require accurate calculations of the electric field distribution under varying electrolyte conditions. Polarization of electrodes under the application of an oscillating voltage difference produces dynamic electrical double layers. The capacitive nature of the double layers significantly inhibits the penetration of the electric field through the double layer and into the surrounding bulk electrolyte at low frequencies. This paper quantitatively discusses the effect of electrode impedance on the electric field distribution as a function of field frequency, electrolyte composition, and electrode zeta potential in microelectrode systems. The design principles for the electrode geometry and configuration are also discussed in terms of their effects on the electric field magnitude and nonuniformity.  相似文献   

16.
提出一种微混合器混合性能的评价方法.在样品盒中注入不同浓度罗丹明B溶液并用体视显微镜观察捕获图像,通过Image J软件读取图像灰度值,建立不同深度下溶液的浓度-灰度值函数关系,运用此关系式将T型微混合器3种不同深度(0.1、 0.2和0.4 mm,质量浓度0.05 %的罗丹明B溶液和去离子水作为配对流体)混合实验中捕获的图像中各像素点上的灰度值转换为浓度值,绘制浓度等高线图及浓度频数分布图,分析各自混合情况,最后引入浓度混合指数概念及计算公式,分析3种深度混合器内不同截面上的混合程度.此方法从定性和定量两方面分析了微尺度下混合腔深度对微混合的影响程度,具有一定的应用价值.  相似文献   

17.
Huh YS  Choi JH  Huh KA  Kim KA  Park TJ  Hong YK  Kim do H  Hong WH  Lee SY 《Electrophoresis》2007,28(24):4748-4757
A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.  相似文献   

18.
We have developed a three-dimensional passive micromixer based on new mixing principles, fluid twisting and flattening. This micromixer is constructed by repeating two microchannel segments, a “main channel” and a “flattened channel”, which are very different in size and are arranged perpendicularly. At the intersection of these segments the fluid inside the micromixer is twisted and then, in the flattened channel, the diffusion length is greatly reduced, achieving high mixing efficiency. Several types of micromixer were fabricated and the effect of microchannel geometry on mixing performance was evaluated. We also integrated this micromixer with a miniaturized DNA purification device, in which the concentration of the buffer solution could be rapidly changed, to perform DNA purification based on solid-phase extraction.  相似文献   

19.
An improved method based on streaming potential and streaming current was proposed to determine zeta potential and surface conductance of porous material simultaneously. In the electrokinetic generation mode, a resistor is connected to the generator and by measuring the voltage drop across resistors with different resistance, a true streaming current can be determined. The zeta potential and surface conductivity can be obtained simultaneously from their relation to streaming potential and streaming current. The electrode and ion concentration polarization effects during the measurement were also discussed. The resistance from channel ends to electrodes, which has typically been ignored in the literature, was shown to have a significant influence on the calculated zeta potential and surface conductance. Ignorance of this resistance would lead to underestimation of both zeta potential and surface conductance values.  相似文献   

20.
以商品活性炭(AC)为正极, 预锂化中间相碳微球(LMCMBs)为负极, 组装成锂离子电容器(LICs). 用X射线衍射(XRD)对LMCMB 电极材料的晶体结构进行了表征和分析, 预锂化量(PIC)小于200 mAh·g-1 时,LMCMB电极材料基本保持了原始的石墨晶体结构. 利用三电极装置, 测试了充放电过程中LICs 的正、负极及整电容器的电压变化曲线. 以LMCMB为电极, 锂离子电容器负极的工作电压变低, 并且电压曲线更加平坦, 同时正极也可以利用到更低的电压区间. 对比锂离子电容器MCMB/AC, LMCMB/AC在比能量密度、循环性能和库仑效率电化学性能方面都得到了改善. 在电压区间2.0-3.8 V 下, 100 次循环后, 放电比容量的保持率从74.8%增加到100%, 库仑效率从95%增加到100%. LMCMB/AC电容器容量不衰退的直接原因是由于AC正极极化变小. 在2.0-3.8 V和1.5-3.8 V电压区间内, LMCMB/AC锂离子电容器的比能量密度分别可达85.6和97.9 Wh·kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号