首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel peroxo titanium complexes, Li(2)(NH(4))(4)[Ti(2)(O(2))(2)(cit)(Hcit)](2).5H(2)O and Zn(NH(4))(4)[Ti(4)(O(2))(4)(Hcit)(2)(cit)(2)].12H(2)O (cit = citrate), show encouraging results in the photochemical oxidation of 2-propanol.  相似文献   

2.
The water-soluble complexes of Ti(IV) with citrate are of interest in environmental, biological, and materials chemistry. The aqueous solution speciation is revealed by spectropotentiometric titration. From pH 3-8, given at least three equivalents of ligand, 3:1 citrate/titanium complexes predominate in solution with successive deprotonation of dangling carboxylates as the pH increases. In this range and under these conditions, hydroxo- or oxo-metal species are not supported by the data. At ligand/metal ratios between 1:1 and 3:1, the data are difficult to fit, and are consistent with the formation of such hydroxo- or oxo- species. Stability constants for observed species are tabulated, featuring log beta-values of 9.18 for the 1:1 complex [Ti(Hcit)](+), and 16.99, 20.41, 16.11, and 4.07 for the 3:1 complexes [Ti(H(2)cit)(3)](2-), [Ti(H(2)cit)(Hcit)(2)](4-), [Ti(Hcit)(2)(cit)](6-), and [Ti(cit)(3)](8-), respectively (citric acid = H(4)cit). Optical spectra for the species are reported. The complexes exhibit similar yet distinct spectra, featuring putative citrate-to-Ti(IV) charge-transfer absorptions (lambda(max) approximately 250-310 nm with epsilon approximately 5000-7000 M(-)(1) cm(-1)). The prevailing 3:1 citrate/titanium ratio in solution is supported by electrospray mass spectrometry data. The X-ray crystal structure of a fully deprotonated tris-citrate complex Na(8)[Ti(C(6)H(4)O(7))(3)].17H(2)O (1) (or Na(8)[Ti(cit)(3)].17H(2)O) that crystallizes from aqueous solution at pH 7-8 is reported. Compound 1 crystallizes in the triclinic space group P, with a = 11.634(2) Angstroms, b = 13.223(3) Angstroms, c = 13.291(3) Angstroms, V = 1982.9(7) Angstroms(3), and Z = 2.  相似文献   

3.
The reaction of potassium molybdate(VI) with biologically relevant ligands, citric and malic acids, in the presence of H2O2 was investigated for the effect of pH variations on the product pattern. That with citric acid led to the formation of the monomeric complex K4[MoO(O2)2(cit)].4H2O (1) in the pH range 7-9, and dimer K5[MoO(O2)(2-)(Hcit)H(Hcit)(O2)2OMo].6H2O (2) (H4cit = citric acid) at pH 3-6 through carboxylate-carboxylic acid hydrogen bonding. The relation with the previously identified K4[MoO3(cit)].2H2O (4) and K4[Mo2O5(Hcit)2].4H2O (5) were shown. These and other intermediates were shown to react in the pH range 3-6 to give a more stable species 2; the reaction sequence was demonstrated either by the protonation from 1 or the deprotonation of [MoO(O2)2(H2cit)](2-) (8). Evidence that 2 exists as a dimer in solution is presented. The reaction with (S)-malic acid afforded Delta-K(2n)[MoO(O2)2((S)-Hmal)]n.nH2O (3) (H3mal = malic acid) that was oxidized further to oxalato molybdate (11) by H2O2. The three complexes 1-3 were characterized by elemental analysis, UV, IR and NMR spectroscopies, in addition to the X-ray structural studies that show citrate and malate being coordinated as bidentate ligands via alpha-alkoxyl and alpha-carboxylate groups. The formation of these complexes is dictated by pH and their thermal stabilities varied with the coordinated hydroxycarboxylate ligands.  相似文献   

4.
Titanium(IV) citrate complexes with different anions Na3[Ti(H2cit)2(Hcit)] · 9H2O (1), K4[Ti(H2cit)(Hcit)2] · 4H2O (2), K5[Ti(Hcit)3] · 4H2O (3) and Na7[TiH(cit)3] · 18H2O (4) (H4cit = citric acid) were isolated in pure forms from the solutions of titanate and citrate at various pH values. X-ray structural analyses revealed the presence of a monomeric tricitrato titanium unit in the four complexes. Each Ti(IV) ion is coordinated octahedrally by the three citrate ligands in different protonated forms. The citrate ligand chelates bidentately to the titanium ion through its negatively charged α-alkoxy and α-carboxy groups. This is consistent with the large downfield 13C NMR shifts for the carbon atoms bearing the α-alkoxy and α-carboxy groups. The very strong hydrogen-bonds existing in the protonated and deprotonated β-carboxy groups may be the key factor for the stabilization of the titanium citrate complexes. When the pH value is lower than 7.0, 13C NMR spectra of 1:3 Ti:citrate solutions are similar to those of the titanium citrate complexes isolated at the corresponding pH values. The dissociation of free citrate increases with the rise of pH value. However, 13C NMR spectra of 1:3 Ti:citrate solutions indicate that there may exist different citrate titanium species when the pH value is higher than 7.0.  相似文献   

5.
Highly water-soluble lanthanum and cerium citrates or malates with ethylenediaminetetraacetate (NH(4))(8)[Ln(2)(Hcit)(2)(EDTA)(2)]·9H(2)O [Ln = La, 1; Ce, 2], K(8)[La(2)(Hcit)(2)(EDTA)(2)]·16H(2)O (3) and K(6)[Ln(2)(Hmal)(2)(EDTA)(2)]·14H(2)O [Ln = La, 4; Ce, 5] (H(4)cit = citric acid, H(3)mal = malic acid, and H(4)EDTA = ethylenediaminetetracetic acid) were prepared from the reactions of lanthanide ethylenediaminetetraacetate trihydrates with citric or malic acid at pH 5.0-6.5. These compounds were characterized by elemental analyses, IR, TG-DTG, solution (13)C{(1)H} NMR, solid state (13)C NMR spectra and X-ray structural analyses. The main structural feature of the compounds consists of a dinuclear unit deca-coordinated by EDTA and citrate or malate. The α-hydroxy and α-carboxy groups of citrate and malate chelate in five-membered ring with one lanthanide ion, while one of the β-carboxy group coordinates with the other lanthanide ion, forming a dimeric structure. The other pendent β-carboxy groups in 1-3 form very strong intramolecular hydrogen bond with α-hydroxy groups [O1O7 2.594(4), 2.587(8) and 2.57(1) ? for 1-3 respectively]. (13)C NMR spectra of the lanthanum compounds show obvious downfield shifts based on solid and solution NMR measurements, indicating the coordinations of mixed-ligand in lanthanum complexes, while highfield shifts are observed in cerium complexes.  相似文献   

6.
The aqueous chemistry of Ti(III) and Ti(IV) in two different chemical environments is investigated given its relevance to environmental, materials, and biological chemistry. Complexes of titanium with the carboxylate ligands citrate and oxalate, found ubiquitously in Nature, were synthesized. The redox properties were studied by using cyclic voltammetry. All the titanium citrate redox couples are quasi-reversible. Electrospray mass spectrometry of the Ti(III) citrate solution shows the presence of a 1:2 Ti/cit complex in solution, in contrast to the predominant 1:3 Ti/cit complex with Ti(IV). The change in the coordination of the ligand to the metal on reduction may explain the quasi-reversible behavior of the electrochemistry. The redox potentials for Ti(IV) citrate in water vary with pH. At pH 7, the approximate E(1/2) is less than -800 mV. This stated change in redox properties is considered in light of the previously reported Ti(IV) citrate solution speciation. Analogous speciation behavior is suggested from the EPR spectroscopy of Ti(III) citrate aqueous solutions. The g tensors are deduced for several pH-dependent species from the simulated data. The X-ray crystal structure of a Ti(III)(2) oxalate dimer Ti(2)(mu-C(2)O(4))(C(2)O(4))(2)(H(2)O)(6).2H(2)O (3), which crystallizes from water below pH 2, is reported. Complex 3 crystallizes in a monoclinic P2(1)/c space group with a = 9.5088(19) Angstroms, b = 6.2382(12) Angstroms, c = 13.494(3) Angstroms, V = 797.8(3) Angstroms(3), and Z = 2. The infrared spectroscopy, EPR spectroscopy, and cyclic voltammetry on complex 3 are reported. The cyclic voltammetry shows an irreversible redox couple approximately -196 mV which likely corresponds to the Ti(IV)(2)/Ti(III)Ti(IV) couple. The EPR spectroscopy on solid complex 3 shows a typical S = 1 triplet-state spectrum. The solid follows non-Curie behavior, and the antiferromagnetic coupling between the two metal centers is determined to be -37.2 cm(-1). However, in solution the complex follows Curie behavior and supports a Ti(III)Ti(IV) oxidation state for the dimer.  相似文献   

7.
The wide use of titanium in applied materials has prompted pertinent studies targeting the requisite chemistry of that metal's biological interactions. In order to understand such interactions as well as the requisite titanium aqueous speciation, we launched investigations on the synthesis and spectroscopic and structural characterization of Ti(IV) species with the physiological citric acid. Aqueous reactions of TiCl(4) with citric acid in the presence of H(2)O(2) and neutralizing ammonia afforded expediently the red crystalline material (NH(4))(4)[Ti(2)(O(2))(2)(C(6)H(4)O(7))(2)].2H(2)O (1). Complex 1 was further characterized by UV-vis, FT-IR, FT- and laser-Raman, NMR, and finally by X-ray crystallography. Compound 1 crystallizes in the monoclinic space group P2(1)/n, with a = 10.360(4) A, b = 10.226(4) A, c = 11.478(6) A, beta = 107.99(2) degrees, V = 1156.6(9) A(3), and Z = 2. The X-ray structure of 1 reveals a dinuclear anionic complex containing a Ti(IV)(2)O(2) core. In that central unit, two fully deprotonated citrate ligands are coordinated to the metal ions through their carboxylate moieties in a monodentate fashion. The central alkoxides serve as bridges to the two titanium ions. Also attached to the Ti(IV)(2)O(2) core are two peroxo ligands each bound in a side-on fashion to the respective metal ions. NH(4)(+) ions neutralize the 4- charge of the anion in 1, further contributing to the stability of the derived lattice through H-bond formation. The structural similarities and differences with congener vanadium(V)-peroxo-citrate complexes may point out potential implications in the chemistry of titanium with physiological ligands, when the former is present in a biologically relevant medium.  相似文献   

8.
Well-known vanadium(IV)- and vanadium(V)-citrate complexes have been employed in transformations involving vanadium redox as well as nonredox processes. The employed complexes include K(2)[V(2)O(4)(C(6)H(6)O(7))(2)] x 4H(2)O, K(4)[V(2)O(4)(C(6)H(5)O(7))(2)] x 5.6H(2)O, K(2)[V(2)O(2)(O(2))(2)(C(6)H(6)O(7))(2)] x 2H(2)O, K(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 6H(2)O, K(3)[V(2)O(2)(C(6)H(4)O(7))(C(6)H(5)O(7))] x 7H(2)O, (NH(4))(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 2H(2)O, and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)] x 6H(2)O. Reactions toward hydrogen peroxide at different vanadium(IV,V):H(2)O(2) ratios were crucial in delineating the routes leading to the interconversion of the various species. Equally important thermal transformations were critical in showing the linkage between pairs of dinuclear vanadium-citrate peroxo as well as nonperoxo complexes, for which the important vanadium(V)-assisted oxidative decarboxylation, leading to reduction of vanadium(V) to vanadium(IV), seemed to be a plausible pathway in place for all the cases examined. FT-IR spectroscopy and X-ray crystallography were instrumental in the identification of the arising products of all investigated reactions. Collectively, the data support the existence of chemical links between different and various structural forms of dinuclear vanadium(IV,V)-citrate complexes in aqueous media. Furthermore, in corroboration of past studies, the examined interconversions lend credence to the notion that the involved species are active participants in the respective aqueous distributions of the metal ion in the presence of the physiological ligand citrate. The concomitant significance of structure-specific species relating to soluble and potentially bioavailable forms of vanadium is mentioned.  相似文献   

9.
Zhou ZH  Deng YF  Cao ZX  Zhang RH  Chow YL 《Inorganic chemistry》2005,44(20):6912-6914
A novel dimeric dioxomolybdenum(VI) citrate complex, K[(MoO2)2-(OH)(H2cit)2].4H2O (1), with weak coordination of beta-carboxylic acid groups and the first structural example of an oxomolybdenum(V) citrate complex, (NH4)6[Mo2O4(cit)2].3H2O (2) (H4cit = citric acid), are isolated in a very acidic solution (pH 0.5-1.0) and neutral conditions (pH 7.0-8.0), respectively. Complex 1 displays strong double hydrogen bonds through beta-carboxyl and beta-carboxylic acid groups [2.621(9) A]. Transformations of the dimeric molybdenum(VI) citrate show that protonation of a carboxyl group will weaken the coordination of molybdenum(VI) citrate. There are obvious dissociations of molybdenum(VI/V) citrate complexes based on 13C NMR observations in solution.  相似文献   

10.
Titanium is a metal frequently employed in a plethora of materials supporting medical applications. In an effort to comprehend the involvement of titanium in requisite biological interactions with physiological ligands, synthetic efforts were launched targeting aqueous soluble species of Ti(IV). To this end, aqueous reactions of TiCl(4) with citric acid afforded expediently, under pH-specific conditions, the colorless crystalline materials Na(6)[Ti(C(6)H(4.5)O(7))(2)(C(6)H(5)O(7))].16H(2)O (1) and Na(3)(NH(4))(3)[Ti(C(6)H(4.5)O(7))(2)(C(6)H(5)O(7))].9H(2)O (2). Complexes 1 and 2 were characterized by elemental analysis, FT-IR, (13)C-MAS solid state and solution NMR, cyclic voltammetry, and X-ray crystallography. 1 crystallizes in the triclinic space group P, with a = 15.511(9) A, b = 15.58(1) A, c = 9.848(5) A, alpha = 85.35(2) degrees, beta = 76.53(2) degrees, gamma = 61.97(2) degrees, V = 2042(2) A(3), and Z = 2. 2 crystallizes in the triclinic space group P, with a = 12.437(5) A, b = 12.440(5) A, c = 12.041(5) A, alpha = 83.08(2) degrees, beta = 81.43(2) degrees, gamma = 67.45(2) degrees, V = 1697(2) A(3), and Z = 2. The X-ray structures of 1 and 2 reveal the presence of a mononuclear complex, with Ti(IV) coordinated to three citrate ligands in a distorted octahedral geometry around Ti(IV). The citrates employ their central alkoxide and carboxylate groups to bind Ti(V), while the terminal carboxylates stay away from the Ti(IV)O(6) core. Worth noting in 1 and 2 is the similar mode of coordination but variable degree of protonation of the bound citrates, with the locus of (de)protonation being the noncoordinating terminal carboxylates. As a result, this work suggests the presence of a number of different Ti(IV)-citrate species of the same nuclearity and coordination geometry as a function of pH. This is consistent with the so far existing pool of mononuclear Ti(IV)-citrate species and provides a logical account of the aqueous speciation in the requisite binary system. Such information is vital in trying to delineate the interactions of soluble and bioavailable Ti(IV) forms promoting biological interactions in humans. To this end, chemical properties, structural attributes, and speciation links to potential ensuing biological effects are dwelled on.  相似文献   

11.
Two titanium embedded polyoxometalates with unprecedented structural features are presented: a monotitanium containing tungstoantimonate Na(13)H(3)[TiO(SbW(9)O(33))(2)]·33 H(2)O featuring a {Ti=O}(2+) moiety (1) and a hexatitanium containing tungstoarsenate K(6)[Ti(4)(H(2)O)(10)(AsTiW(8)O(33))(2)]·30 H(2)O containing a {Ti(4)(H(2)O)(10)}(16+) moiety (2). Both compounds have been fully characterised by single crystal X-ray diffraction, elemental analysis, IR and TGA. 1 is constructed from two α-B-{Sb(III)W(9)O(33)} fragments linked by five sodium cations and an unprecedented square pyramidal Ti(O)O(4) group with a terminal Ti=O bond, and 2 exhibits a Krebs-type structure composed of two {AsTiW(8)O(33)} fragments, where one W(VI) centre has been substituted for a Ti(IV) centre in each, fused together via a belt of four additional Ti(IV) centres. This system represents the tungsten Ti-incorporated polyoxoanion with one of the highest Ti:W ratios so far reported. Additionally, 2 could also be isolated as an n-tetrabutylammonium salt and has been further characterised by electrochemistry and electrospray ionisation (ESI) MS studies. Due to the unique nature of these systems, both have been fully investigated using DFT calculations yielding highly interesting results. Structure 1 has been optimised with five sodium atoms in the belt position, which in addition to reducing the high charge of the cluster influence a stabilisation of the antimony lone pairs. Electrostatic potential calculations highlight the high electronegativity of the terminal oxygen on the titanium centre, enhancing real potentiality as a reactive site for catalysis.  相似文献   

12.
Dinuclear Ti(IV), Zr(IV), and Ce(IV) oxo and peroxo complexes containing the imidodiphosphinate ligand [N(i-Pr(2)PO)(2)](-) have been synthesized and structurally characterized. Treatment of Ti(O-i-Pr)(2)Cl(2) with KN(i-Pr(2)PO)(2) afforded the Ti(IV) di-μ-oxo complex [Ti{N(i-Pr(2)PO)(2)}(2)](2)(μ-O)(2) (1) that reacted with 35% H(2)O(2) to give the peroxo complex Ti[N(i-Pr(2)PO)(2)](2)(η(2)-O(2)) (2). Treatment of HN(i-Pr(2)PO)(2) with Zr(O-t-Bu)(4) and Ce(2)(O-i-Pr)(8)(i-PrOH)(2) afforded the di-μ-peroxo-bridged dimers [M{N(i-Pr(2)PO)(2)}(2)](2)(μ-O(2))(2) [M = Zr (3), Ce (4)]. 4 was also obtained from the reaction of Ce[N(i-Pr(2)PO)(2)](3) with 35% H(2)O(2). Treatment of (Et(4)N)(2)[CeCl(6)] with 3 equiv of KN(i-Pr(2)PO)(2) afforded Ce[N(i-Pr(2)PO)(2)](3)Cl (5). Reaction of (Et(4)N)(2)[CeCl(6)] with 2 equiv of KN(i-Pr(2)PO)(2) in acetonitrile, followed by treatment with Ag(2)O, afforded the μ-oxo-bridged complex [Ce{N(i-Pr(2)PO)(2)}Cl](2)[μ-N(i-Pr(2)PO)(2)](2)(μ-O) (6). 6 undergoes ligand redistribution in CH(2)Cl(2) in air to give 5. The solid-state structures of [K(2){N(i-Pr(2)PO)(2)}(2)(H(2)O)(8)](n) and complexes 1-6 have been determined.  相似文献   

13.
Investigation of the aqueous coordination chemistry for citrate and molybdenum(VI) resulted in the isolation of molybdenum(VI) citrato monomeric raceme and dimer K4[MoO3(cit)].2H2O (1) and K4[(MoO2)2O(Hcit)2].4H2O (2) (H4cit = citric acid). Complex 1 can serve as the first structurally characterized monomeric citrato molybdate and may represent an early mobilized precursor in the biosynthesis of FeMo-co (FeMo-cofactor). The two complexes have been characterized by elemental analyses and IR and NMR spectroscopies. The IR and NMR spectra are consistent with a monomeric species or a monooxo-bridged dinuclear structure, as revealed by a single crystal X-ray diffraction study. Compound 1 is monoclinic space group P2(1)/c with a = 7.225(1) A, b = 9.151(2) A, c = 22.727(2) A, beta = 94.93(1) degrees, V = 1497.1(7) A3, and Z = 4. Full-matrix least-squares refinement resulted in residuals of R = 0.027 and Rw = 0.032. The molybdenum atom forms an octahedral coordination with three oxo groups and one tridentate citrate, in which the latter is coordinated through the alkoxy and vicinal carboxyl and much more weakly by one of the two terminal groups [2.411(3) A]. Compound 2 is triclinic space group P1 with a = 8.2728(8) A, b = 8.9514(8) A, c = 10.0605(9) A, alpha = 101.673(8) degrees, beta = 100.672(7) degrees, gamma = 112.938(7) degrees, V = 642.5(3) A3, and Z = 1. Full-matrix least-squares refinement resulted in residuals of R = 0.033 and Rw = 0.039. The complex anion contains a linear (O2Mo)O(MoO2) core with the bridging oxo group lying at the center of inversion symmetry (Mo-Ob-Mo, 180 degrees). Each citrate ligand is three-coordinated to one molybdenum atom through the deprotonated hydroxy, alpha-carboxyl, and one beta-carboxyl group, making each metal atom six-coordinate.  相似文献   

14.
The complex [(Ph(3)P)(2)Ag(H(2)cit)]·EtOH (1; H(2)cit(-) = dihydrogencitrate = C(6)H(7)O(7)(-)) contains [(Ph(3)P)(2)Ag(H(2)cit)] molecules in which the silver atom is coordinated to two PPh(3) molecules and the two oxygen atoms of one of the 'terminal'/1-carboxylate groups of the dihydrogencitrate group. The molecules form centrosymmetric hydrogen-bonded dimers in the solid. In [{(Ph(3)P)(2)Ag}(2)(Hcit)], (2), unsymmetrical deprotonation of the citrate grouping is found, from the 1- and 3- (i.e. terminal and central) carboxylates: [(Ph(3)P)(2)Ag(O(2)CCH(2)C(OH) (CH(2)COOH)CO(2))Ag(PPh(3))(2)]. The above complexes, as well as [(Ph(3)P)(3)Ag(H(2)cit)] (3) were prepared via conventional solution methods, involving the reaction of trisilver(I) citrate, citric acid and triphenylphosphine, and by a mechanochemical method involving the reaction of silver(I) oxide, citric acid and triphenylphosphine. IR studies of 1-3 show the presence of coordinated carboxylate and free carboxylic acid groups in the mono- and di-hydrogencitrate ligands, and the formation of 2 from 1 shows that dihydrogencitrate deprotonation can occur upon dissolution of 1 in protic solvents. High-field (9.40 T) (31)P CPMAS NMR spectra were recorded and analysed, yielding heteronuclear (1)J((107/109)Ag,(31)P) and homonuclear (2)J((31)P,(31)P) spin-spin coupling constants.  相似文献   

15.
The gold-containing titanium peroxo-complex AuCl4(NH4)7[Ti4(O2)4(Hcit)2(cit)2].12H2O 1 allows an easy reproducible access to pure Au/TiO2 composites.  相似文献   

16.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

17.
Baggio R  Perec M 《Inorganic chemistry》2004,43(22):6965-6968
The first lanthanide citrate coordination polymer with the formula [La(Hcit)(H(2)O)](n) (Hcit(3-) = C(OH)(COO(-))(CH(2)COO(-))(2)) was prepared from La(2)O(3) and citric acid at pH = 2.2-2.5 under hydrothermal conditions at 120 degrees C. The compound was characterized by elemental analysis, IR, TG-DTA, and X-ray crystallography. It is thermally stable up to 158 degrees C and insoluble in common solvents. The compound crystallizes in the monoclinic space group C2/c with a = 16.765(3) A, b = 8.822(2) A, c = 14.048(3) A, beta = 120.64(3) degrees , and Z = 8. The structure consists of chains of La(III) cations bridged by O--C--O groups with pendant Hcit anions forming a pillar structure. The Hcit ligand is involved in six La--O bonds to five different La centers in a very compact 3D structure.  相似文献   

18.
Four new Th(IV), U(IV), and Np(IV) hexanuclear clusters with 1,2-phenylenediphosphonate as the bridging ligand have been prepared by self-assembly at room temperature. The structures of Th(6)Tl(3)[C(6)H(4)(PO(3))(PO(3)H)](6)(NO(3))(7)(H(2)O)(6)·(NO(3))(2)·4H(2)O (Th6-3), (NH(4))(8.11)Np(12)Rb(3.89)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·15H(2)O (Np6-1), (NH(4))(4)U(12)Cs(8)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·18H(2)O (U6-1), and (NH(4))(4)U(12)Cs(2)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(18)·40H(2)O (U6-2) are described and compared with other clusters of containing An(IV) or Ce(IV). All of the clusters share the common formula M(6)(H(2)O)(m)[C(6)H(3)(PO(3))(PO(3)H)](6)(NO(3))(n)((6-n)) (M = Ce, Th, U, Np, Pu). The metal centers are normally nine-coordinate, with five oxygen atoms from the ligand and an additional four either occupied by NO(3)(-) or H(2)O. It was found that the Ce, U, and Pu clusters favor both C(3i) and C(i) point groups, while Th only yields in C(i), and Np only C(3i). In the C(3i) clusters, there are two NO(3)(-) anions bonded to the metal centers. In the C(i) clusters, the number of NO(3)(-) anions varies from 0 to 2. The change in the ionic radius of the actinide ions tunes the cavity size of the clusters. The thorium clusters were found to accept larger ions including Cs(+) and Tl(+), whereas with uranium and later elements, only NH(4)(+) and/or Rb(+) reside in the center of the clusters.  相似文献   

19.
Reaction of acidified (pH approximately 7) sodium tungstate solutions with transition metal cations (Fe(3+), Ni(2+), Zn(2+), Co(2+)) leads to the formation of transition-metal-disubstituted Keggin-type heteropolytungstates with 3d-metal ions distributed over three different positions. A detailed investigation of the synthesis conditions confirmed that the complexes could equally be obtained using aqueous solutions of either Na(2)WO(4).2H(2)O (sodium monotungstate) at pH approximately 7, Na(6)[W(7)O(24)]. approximately 14H(2)O (sodium paratungstate A), or Na(10)[H(2)W(12)O(42)].27H(2)O (sodium paratungstate B) as starting materials. Three complexes, (NH(4))(6)Ni(II)(0.5)[alpha-Fe(III)O(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O, (NH(4))(7)Zn(0.5)[alpha-ZnO(4)W(11)O(30) ZnO(5)(OH(2))].18H(2)O, and (NH(4))(7)Ni(II)(0.5)[alpha-ZnO(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O were isolated in crystalline form. X-ray single-crystal structure analysis revealed that the solid-state structures of the three compounds consist of four main structural fragments, namely [MO(4)W(11)O(30)M'O(5)(OH(2))](n-) (Keggin-type, alpha-isomer) heteropolytungstates, hexaquo metal cations, [M'(OH(2))(6)](2+), ammonium-water cluster ions, [(NH(4)(+))(8)(OH(2))(12)], and additional ammonium cations and water molecules. The 3d metals occupy the central (tetrahedral, M) and the peripheral (octahedral, M') positions of the Keggin anion, as well as cationic sites (M') outside of the polyoxotungstate framework. UV-vis spectroscopy, solution ((1)H, (183)W) and solid-state ((1)H) NMR, and also chemical analysis data provided evidence that the 3d-metal-disubstituted Keggin anions do not exist in solution but are being formed only during the crystallization process. Investigations in the solid state and in solution were completed by ESR, IR, and Raman measurements.  相似文献   

20.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号