首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sol-gel method was applied to the synthesis of porous bioactive glass-ceramic materials in the Ca-Al2O3-P2O5-ZnO system when compositions were chosen in the glass formation range. Aluminium sol and soluble inorganic salts of the other components have been used as starting materials. The sol-gel transition was achieved by controlling the pH value of the medium. After drying the gel products were thermally treated up to 800°C, Phase formation was studied by X-ray diffraction, IR spectroscopy and electron microscopy.It was found that the main crystalline phases in the glass ceramics were C(PO3)2 and Ca2P2O7. The amorphous powder was sintered to form ceramic materials with average pore size distribution of 150–200 µm by isostatic pressing and heat treatment at 500–600°C. This glass ceramic is more bioactive than hydroxylapatite in the initial stage after implantation.  相似文献   

2.
The intradiffusion coefficients of Na+, Cl ions and water and the tracerdiffusion coefficients of Ca2+ ion have been measured in the ternary system NaCl–MgCl2–H2O at 25°C. The intradiffusion coefficients of Mg2+ in this system have been estimated from the corresponding Ca2+ diffusion measurements. Viscosities were measured at the same solution concentrations as were used for the diffusion experiments. Intradiffusion and tracerdiffusion coefficients in a range of temperatures from 5 to 45°C are reported for standard sea-water which is a member of the above ternary set.  相似文献   

3.
Interactions of three types of tetraalkylammonium cations (tetrapropyltetrabutyl-and tri-isoamylbutyl- ammonium) with perchlorate and tetraphenylborate anions were studied by the conductivity method in 2-butanone from –45°C to 25°C. Conductance data obtained for diluted solutions (5×10–5 – 2×10–3 mol-dm–3) were used to calculate the limiting molar conductivities and associationconstants. The conductance equation of Fuoss-Hsia including the Chen term and the chemical model assumption were applied. Limiting ion conductivities were calculated assuming equal limiting conductivities of the i-Am3BuN+ and BPh 4 ions at all temperatures. Gibbs energies and entropies of ion pair formation, calculated from the dependence of association constants on temperature, are presented including the contributions due to short-range forces.  相似文献   

4.
New alkali resistant BaO-TiO2-SiO2 coatings have been developed via the sol-gel process. In the solutions and in the gels (T<300°C) an infrared absorption band at 930 cm–1 gives the possible evidence of mixed Si-O-Ti bonds, which have not been found in the system SiO2-TiO2-ZrO2. Baking the films at about 500°C for less than 1 h leads to stable layers with negligible residual carbon contents. Compositions near 20 BaO-40 TiO2-40 SiO2 showed the best performance.  相似文献   

5.
Hydrophobic porous silica has been prepared by surface modification of TEOS (tetraethylorthosilicate) wet gel with 6 and 12 vol.% of TMCS (trimethylchlorosilane). We characterized the products by using FT-IR, TGA, DTA, N2 adsorption/desorption, contact angle and SEM. Surface silanol groups of the gel were widely replaced by–Si(CH3)3 to result in a hydrophobic SiO2 powder as confirmed by contact angle measurements with H2O, 1-butanol and ethanol. The modified dried gels had a surface area of 950–1000 m2/g (average pore size 120 Å), compared to the non-modified surface which had a surface area of 690 m2/g (average pore size 36 Å). The adsorption/desorption isotherm curves indicated they had similar pore characteristics as aerogels prepared by the supercritical drying process.  相似文献   

6.
Volume-fixed mutual diffusion coefficients have been measured for aqueous MnCl2 and CdCl2 solutions from 0.004 to 4.93–5.00 mol-dm–3 (M) at 25°C. Diffusion coefficients for MnCl2 decrease to a minimum, rise to a maximum, and then decrease rapidly; such behavior is typical for strong electrolytes. In contrast CdCl2 diffusion coefficients decrease continuously with concentration; similar behavior is known for certain other associated electrolytes. Since thermodynamic diffusion coefficients for both salts are qualitatively similar, diffusion differences may be primarily due to thermodynamic rather than mobility factors. Isopiestic data were measured for CdCl2 from 1.79 to 7.29 mol- (kg H2O)–1, and critically compared to other isopiestic and emf data for CdCl2. Higher quality emf data are completely consistent with isopiestic data. Recommended smoothed values of activity coefficients, osmotic coefficients, water activities, and activity derivatives are given for CdCl2 at 25°C.Work performed under the auspices of the Office of Basic Energy Sciences (Geosciences) of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.  相似文献   

7.
A nanoceramic product of the composition Lu2Ti2O7 is synthesized by a coprecipitation method with a subsequent sublimation drying and an annealing at 650–1650°C. The conduction of Lu2Ti2O7 synthesized at 1650°C is ionic (10–3 S cm–1 at 800°C). Thus, a new material with a high ionic conduction has been discovered. The ordering in Lu2Ti2O7 is studied by methods of RFA, RSA, IK spectroscopy, electron microscopy, and impedance spectroscopy. The existence of a low-temperature phase transition fluorite-pyrochlore at 800°C and a high-temperature conversion order-disorder at 1650°C are established.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 298–303.Original Russian Text Copyright © 2005 by Shlyakhtina, Ukshe, Shcherbakova.  相似文献   

8.
SnO2 sols were prepared in the following way: (1) precipitation of metastannic acid with aqueous ammonia from aqueous solutions of SnCl4, (2) washing the precipitates with NH4NO3 solution and water, (3) peptization of precipitates in water, sometimes with an addition of HNO3, at elevated temperature using mechanical stirring. In those sols, sometimes diluted with water or ethanol, substrates (glass or silica derived wafers) were dipped and withdrawn at various rates. Gel coatings were converted into crystalline SnO2 by thermal treatment at 600°C. Coatings with thickness between 300–2000 Å were prepared.  相似文献   

9.
The structure, conductivity and water uptake of the oxygen-deficient perovskite-type compound Ba4Ca2Ta2O11 have been investigated. Ba4Ca2Ta2O11 crystallizes in the cryolite structure (cubic, Fm3m SG) with a = 8.4508(2) Å, under dry air. The compound can be partially hydrated up to a maximum water content of approximately 0.52 mol H2O per mol Ba4Ca2Ta2O11. In moist air, the structure symmetry becomes monoclinic (C2/m) and the temperature dependence of total conductivity shows a different behavior because of changes in transport mechanism. Three regions can be observed as a function of temperature. For the low temperature range 200–400 °C, the protonic conduction is prevailing with an activation energy EA = 0.85 eV. In the intermediate temperature range (400–600 °C), O2− anionic and protonic conductions are mixed with an activation energy EA = 0.45 eV and in the third region, for temperatures above 600 °C, O2−conduction is prevailing with an activation energy EA = 0.85 eV.  相似文献   

10.
High proton-conducting P2O5-SiO2 glass was applied to the electrolyte of the hydrogen concentration cell for hydrogen gas sensing. 5P2O5·95SiO2 glass was prepared using the sol-gel method and its electrical conductivity and electromotive force were measured at 50°C as a function of both the ambient humidity and hydrogen gas concentration. The electrical conductivities increased with increasing humidity and reached 10–2 S/cm at 90% relative humidity. The electromotive force of the hydrogen concentration cell, where the glass was used as a membrane, showed good Nernstian response to hydrogen pressure in the high relative humidity region.  相似文献   

11.
The near-infrared absorption spectra (9500 to 11000 cm–1) of HOD, 20 mol% in D2O were measured at temperatures between 4 and 55°C and pressures up to 500 MPa. From the analysis of the spectra, the following conclusions are drawn. (1) At temperatures below about 38°C, the ice I-like bulky structure is destroyed to form the dense structure which reflects the high-pressure ice-like structure as the pressure is increased. (2) At temperatures above about 38°C, the bulky structure hardly remains at atmospheric pressure and the formation of dense structure proceeds monotonically with increasing pressure. The results and conclusion obtained in the present paper agrees with those obtained for pure H2O water in the previous investigation.  相似文献   

12.
The effect of Fe2O3 dopants (0–0.8 mol.%) on ZnO conductivity and its chlorine chemisorption ability has been studied in the temperature range of 20–250 °C. Introduction of dopants increases the activation energy of ZnO conductivity and decreases the conductivity. The effective charge of the chemisorbed chlorine species as well as the strength of their bonding to the surface in samples containing Fe2O3 are considerably lower than in initial ZnO, which leads to a decrease of reactivity of the doped catalysts in chlorination.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1196–1199, July, 1993.  相似文献   

13.
Changes in electron spin resonance (ESR) spectra of the manganese (II) ion are used to determine thermodynamic association constants for MnCl+ and MnSO 4 0 complexes from 25 to 170°C. The technique employed requires minimal sample handling and preparation. Pressure increase had a negligible effect on the association constants which increase from 4 m–1 at 50°C to 200 m–1 at 170°C for MnCl+ and from 200 m–1 at 25°C to 5700 m–1 at 170°C for MnSO 4 0 . The ratio of inner to outer sphere complexes decreases with increasing temperature to 120°C and then increases from 120 to 170°C for both chloride and sulfate complexes. Enthalpies, entropies, heat capacities, and Gibb's free energies determined for each of the reactions compare well with values determined by other methods. These results confirm the validity of the high temperature and pressure ESR approach, which can be used to study other high temperature association reactions of Mn+2 and, by competitive effects, association reactions of metals that do not have an ESR signal.  相似文献   

14.
The composition of the products of carbothermal reduction of Sc2O3 is examined by X-ray diffraction and chemical analysis and by the hydrolysis method. At pressures of 10–2-1 Pa, the reaction starts in the temperature region of 1 000–1 200°C. The first product is Sc2OC of NaCl type; at 1 Pa and 1 400–1 500°C this substance is formed quantitatively (according to stoichiometry) within 50–100 h, repeated homogenization, however, is necessary, or else Sc2OC reacts locally with Sc2O3 giving Sc2O1+x C1–x . The lattice parameter of Sc2OC in the presence of Sc15C19 is 457.63pm. At temperatures above 1 500°C, Sc15C19 is incompletely formed by subsequent reaction with carbon. The product melts at cca. 1 800°C; carbon dissolves and the final composition approaches ScC2. Carbon separates during solidification. The phase fractions in the products are affected by evaporation, the vapour pressures above both Sc2OC and Sc15C19 being comparable with the pressure requisite for the carboreduction process. The results are discussed with respect to the often ambiguous published data.
Untersuchung hydrolysierbarer Carbide, XXII. Die karbothermische Reduktion von Scandiumoxid
Zusammenfassung Zur Untersuchung von Produkten der karbothermischen Reduktion von Scandiumoxid wurden sowohl röntgenographische und chemische Analyse als auch die hydrolytische Methode verwendet. Bei 10–2 bis 1 Pa beginnt die Reaktion im Temperaturintervall von 1 000–1 200°C. Das erste Reaktionsprodukt ist das Scandiumoxidcarbid Sc2OC von NaCl-Typ, das quantitativ (der Stöchiometrie entsprechend) bei 1 400–1 500°C und 1 Pa in 50–100 Stunden entsteht. Eine wiederholte Homogenisierung ist allerdings notwendig, damit es zu keiner lokalen Reaktion zwischen Sc2OC und Sc2O3 kommt, bei der dann die Phase Sc2O1+x C1–x entsteht. In Gegenwart von Sc15C19 ist der Gitterparameter von Sc2OCa=457.63pm. Über 1 500°C führt eine weitere Reaktion mit Kohlenstoff zu einer nicht ganz vollendeten Bildung von Sc15C19. Bei cca. 1 800°C schmilzt das Reaktionsprodukt bei gleichzeitiger Auflösung von weiterem Kohlenstoff und die Zusammensetzung nähert sich der Formel ScC2, beim Erstarren fällt der Kohlenstoff wieder aus. Die Verteilung der Phasen im Produkt wird von der Verdampfung beeinflußt, da die Dampfdrucke von Sc2OC und Sc15C19 mit dem zum Karboreduktionverlauf notwendigen Druck vergleichbar sind. Die erhaltenen Ergebnisse werden in Relation mit den nicht eindeutigen Angaben in der Literatur diskutiert.
  相似文献   

15.
The thermal behaviour of Ba[Cu(C2O4)2(H2O)]·5H2O in N2 and in O2 has been examined using thermogravimetry (TG) and differential scanning calorimetry (DSC). The dehydration starts at relatively low temperatures (about 80°C), but continues until the onset of the decomposition (about 280°C). The decomposition takes place in two major stages (onsets 280 and 390°C). The mass of the intermediate after the first stage corresponded to the formation of barium oxalate and copper metal and, after the second stage, to the formation of barium carbonate and copper metal. The enthalpy for the dehydration was found to be 311±30 kJ mol–1 (or 52±5 kJ (mol of H2O)–1). The overall enthalpy change for the decomposition of Ba[Cu(C2O4)2] in N2 was estimated from the combined area of the peaks of the DSC curve as –347 kJ mol–1. The kinetics of the thermal dehydration and decomposition were studied using isothermal TG. The dehydration was strongly deceleratory and the -time curves could be described by the three dimensional diffusion (D3) model. The values of the activation energy and the pre-exponential factor for the dehydration were 125±4 kJ mol–1 and (1.38±0.08)×1015 min–1, respectively. The decomposition was complex, consisting of at least two concurrent processes. The decomposition was analysed in terms of two overlapping deceleratory processes. One process was fast and could be described by the contracting-geometry model withn=5. The other process was slow and could also be described by the contracting-geometry model, but withn=2.The values ofE a andA were 206±23 kJ mol–1 and (2.2±0.5)×1019 min–1, respectively, for the fast process, and 259±37 kJ mol–1 and (6.3±1.8)×1023 min–1, respectively, for the slow process.Dedicated to Prof. Menachem Steinberg on the occasion of his 65th birthday  相似文献   

16.
Supported ceramic membranes have been produced by the sol-casting procedure from aqueous colloidal suspensions prepared by the sol-gel route. Coatings on a tubular alumina support have been successfully performed leading to crack free layers. Samples have been sintered at 400, 500 and 600°C, and the effect of heating treatment on the nanostructure and on the ultrafiltration properties are analyzed. The characterization has been done by high resolution scanning electron microscopy, nitrogen adsorption-desorption isotherms, water permeation and cut-off determination using polyethylene glycol standard solutions. The micrographs have revealed that grains and pore size increase with the temperature, whereas their shape remains invariant. This results is in agreements with N2 adsorption-desorption analyses, which have revealed that the mean pore size diameter increases from 4 to 10 nm as the sintering temperature increases from 400 to 600°C, while the total porosity remains constant. Furthermore, the tortuosity, calculated from water permeability, is essentially invariant with the sintering temperatures. The membranes cut-off, determined with a retention rate equal to 95%, are 3500, 6500 and 9000 g·mol–1 for 400, 500 and 600°C, respectively, showing that the permeation properties of SnO2 ultrafiltration membranes can easily be controlled by sintering condition.  相似文献   

17.
The relative sound speed of mixtures of aqueous solutions of NaCl–MgSO4 and MgCl2–Na2SO4 at I=0.1 and 0.5m have been determined at 5, 15, and 25°C and pressures to 1000 bars. The resulting sound speeds, adiabatic and apparent molal compressibilities have been compared to results estimated from binary solutions using an additivity principle — Young's rule. The estimated sound speeds agree with the measured values for the NaCl–MgSO4 system to ±0.15 m-sec–1 and for the Na2SO4–MgCL2 system to ±0.20 m-sec–1. The deviations increase with increasing ionic strength (±0.08 m-sec–1 at I=0.1 and ±0.25 m-sec–1 at I=0.5 m).The sound speed of seawater have also been estimated from 0 to 40°C, 0.1 to 0.7 ionic strength and 0 to 1000 bars. The estimates were found to be in good agreement (±0.4 m-sec–1) with the measured values.These results indicate that reasonable estimates of the adiabatic PVT properties of dilute mixtures of electrolyte solutions can be made using the additivity principle, without excess mixing terms.  相似文献   

18.
Porous nanocrystalline TiO2 anatase thin films have been synthesized on glass substrates via a sol-gel dip-coating method. The coating sol was obtained by suppressed hydrolysis of Ti(OC4H9)4 through the addition of complexing molecules as stabilizers in an alcohol solution containing polyethylene glycol (PEG). Chemical changes taking place during the sol-gel process were discussed based on IR spectra analysis. A model concerning the pore formation was established to explain the role of PEG and solvent with core-shell configuration as double-templates. The structural characteristics of porous TiO2 films were found to greatly depend on the concentration and molecular weight of PEG, the types of stabilizing agents and solvents. The pore size of the films was tunable in the range of 10–500 nm and their surface area varied from 51 to 72 m2·g–1.  相似文献   

19.
The properties of porous glass membranes prepared by acid leaching of sodium borosilicate glasses 8B and 8V and also 8B glass containing small amounts of fluorine and phosphorus (SFP) are comprehensively studied. The effect of the composition and conditions of thermal treatment of the original and porous glasses on their structural (specific surface area, structure resistance coefficient, average pore radius, volume porosity, and filtration factor) and electrokinetic characteristics (conductivity, counterion transport numbers, and electrokinetic potential) in KCl solutions at neutral pH values is studied. It is shown that an increase in thermal treatment temperature T TT of the porous glasses from 120 to 750°C leads to a decrease in structure resistance coefficient β of 8B membranes. For membranes prepared from SFP glass, β values, efficiency coefficients, and counterion transport numbers are virtually independent of T TT at 120–600°C and increase at T TT = 750°C. Specific surface area and volume porosity decrease with a rise in T TT for all studied membranes. The observed regularities of variations in the membrane characteristics are explained by the increasing fraction of large pores because of sintering of small pores with an increase in T TT and by the different amounts of secondary silica in the pore space of porous glasses.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 299–307.Original Russian Text Copyright © 2005 by Volkova, Ermakova, Sidorova, Antropova, Drozdova.  相似文献   

20.
The complexation reactions between Mg2+,Ca2+,Sr2+ and Ba2+ metal cations with macrocyclic ligand, dicyclohexano-18-crown-6 (DCH18C6) were studied in methanol (MeOH)–water (H2O) binary mixtures at different temperatures using conductometric method . In all cases, DCH18C6 forms 1:1 complexes with these metal cations. The values of stability constants of complexes which were obtained from conductometric data show that the stability of complexes is affected by the nature and composition of the mixed solvents. While the variation of stability constants of DCH18C6-Sr 2+ and DCH18C6-Ba2+versus the composition of MeOH–H2O mixed solvents is monotonic, an anomalous behavior was observed for variations of stability constants of DCH18C6-Mg2+ and DCH18C6-Ca2+ versus the composition of the mixed solvents. The values of thermodynamic parameters (ΔHc°, ΔSc°) for complexation reactions were obtained from temperature dependence of formation constants of complexes using the van’t Hoff plots. The results show that in most cases, the complexation reactions are enthalpy stabilized but entropy destabilized and the values of thermodynamic parameters are influenced by the nature and composition of the mixed solvents. The obtained results show that the order of selectivity of DCH18C6 ligand for metal cations in different concentrations of methanol in MeOH–H2O binary system is: Ba2+>Sr2+>Ca2+> Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号