首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Water-soluble phosphonate-functionalized triaryl phosphine ligands Na(2)[Ph(2)P(4-C(6)H(4)PO(3))].1.5H(2)O (4a), Na(2)[Ph(2)P(3-C(6)H(4)PO(3))].2H(2)O (4b), and Na(2)[Ph(2)P(2-C(6)H(4)PO(3))].2H(2)O (4c), were prepared in 54-56% yields by the transesterification and hydrolysis of the appropriate phosphonic acid diethyl ester precursors. The solubilities of 4a-c in water are compared and the spectroscopic properties studied in detail. The crystal structure of Na(2)[Ph(2)P(4-C(6)H(4)PO(3))(H(2)O)(3)(CH(3)OH)].CH(3)OH (monoclinic, P2(1)/n, a = 6.4457(8) ?, b = 8.1226(8) ?, c = 46.351(3) ?, beta = 92.902(8) degrees, Z = 4) shows a dimeric association via two bridging water molecules and four sodium ions. Reaction of 4a with PtCl(2)(PPh(3))(2) in a biphasic H(2)O/CH(2)Cl(2) mixture gives cis- and trans-Na(4)[PtCl(2){Ph(2)P(4-C(6)H(4)PO(3))}(2)]. 3H(2)O. Palladium dichloride and 4a in H(2)O/benzene catalyzes the carbonylation of benzyl chloride to give phenylacetic acid (91%).  相似文献   

2.
A route to various substituted phosphine phosphonic acid compounds of the general form Ar(2)PC(6)H(4)PO(OH)(2) (Ar = Ph, o-MeC(6)H(4), o-MeOC(6)H(4)) has been investigated. These compounds were employed as bidentate anionic [P,O] ligands in neutral palladium complexes. The [P,O] chelating coordination was determined by X-ray crystallography of a representative palladium complex. Furthermore, the bifunctional ligand Ph(2)PC(6)H(4)PO(OH)Ph represents the first example of a chelating anionic [P,O] ligand resulting from the combination of a phosphine and a phosphinate moiety.  相似文献   

3.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

4.
Several platinum amides of formula trans-[PtCl(NHAr)(PEt(3))(2)] (Ar = 3-FC(6)H(4), 2; 4-FC(6)H(4), 3; 4-ClC(6)H(4), 4; 4-IC(6)H(4), 5; 4-Cl,3-NO(2)-C(6)H(3), 6) have been synthesized by reaction of [PtHCl(PEt(3))(2)] with aryl azides. All the complexes feature planar arylamido moieties and hindered rotation around the N-aryl and Pt-N bonds have been detected and separately studied. The X-ray crystal structures of complexes 5 and 6 have been determined. Complex 5 crystallizes in the orthorhombic space group Pnma, with a = 23.806(4) A, b = 15.099(2) A, c = 6.7593(10) A, alpha = beta = gamma = 90 degrees, and Z = 4. Compound 6 shows an N-H...O(NO) hydrogen bond and it crystallizes in the monoclinic space group P2(1)/n, with a = 12.215(3) A, b = 8.078(2) A, c = 13.052(4) A, alpha = gamma = 90 degrees, beta = 90.057(6) degrees, and Z = 2. Except for Ar = 4-Cl,3-NO(2)-C(6)H(3), the activation energies obtained for the complexes indicate that both dynamic processes occur simultaneously with a common barrier which originates in the multiple bond character of the N-aryl bond due to a strong pi-donor behavior of the N atom in the N-aryl bond. The rotation about the Pt-N bond is unfavorable because of steric congestion with the planar amide, which can be overcome only when the aromatic ring can rotate. For the complex trans-[PtCl[NH(4-Cl,3-NO(2)-C(6)H(3))](PEt(3))(2)] the barrier to rotation is mostly due to hydrogen bond interaction between the NO(2) ortho substituent and the amide H atom.  相似文献   

5.
The coordination chemistry of the four phosphines, P{C6H3(o-CH3)(p-Z)}3 where Z = H (1a) or OMe (1b) and P{C6H3(o-CHMe2)(p-Z)}3 Z = H (1c) or OMe (1d) with platinum(II) and palladium(II) is reported. Mononuclear complexes trans-[PdCl2L2](L = 1a,b) and trans-[PtCl2L2](L = 1a-c) have been prepared and the crystal structures of trans-[PdCl2(1b)2] and trans-[PtCl2(1c)2] as their dichloromethane solvates have been determined. The structures show that in these complexes, the ligands adopt g+ g+ a conformations. Examination of the Cambridge Structural Database confirms this to be one of only two conformer types that tri-o-tolylphosphines adopt and the only viable conformer in 4 and 6 coordinate complexes. The binuclear complexes trans-[Pd2Cl4L2](L = 1c,d) are formed even when an excess of the bulky 1c,d is used in the synthesis and the crystal structure of trans-[Pd2Cl4(1c)2] as its chloroform solvate is reported. Reaction of [PtCl2(NCBu(t))2] with 1b-d in refluxing toluene gave the cycloplatinated species [Pt2Cl2(L - H)2] where L - H is phosphine 1b-d deprotonated at one of the ortho-methyl carbon atoms. Variable temperature 31P and 1H NMR spectroscopy reveals that all the complexes reported are fluxional. The processes are analysed in terms of restricted P-C and P-M rotations that give rise to diastereoisomeric rotamers because of the helically chiral orientations of the aryl substituents. For the complexes of the bulky ligands 1c,d, rotation about the P-C bond is slow on the NMR timescale even up to 75 degrees C. The crystal structure of the cyclometallated complex [Pt2Cl2(1d - H)2] has been determined.  相似文献   

6.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

7.
Secondary phosphane oxides, R(2)P(O)H, are commonly used as preligands for transition-metal complexes of phosphinous acids, R(2)P-OH (R=alkyl, aryl), which are relevant as efficient catalysts in cross-coupling processes. In contrast to previous work by other groups, we are interested in the ligating properties of an electron-deficient phosphinous acid, (R(f))(2)P-OH, bearing the strongly electron-withdrawing and sterically demanding 2,4-bis(trifluoromethyl)phenyl group towards catalysis-relevant metals, such as palladium and platinum. The preligand bis[2,4-bis(trifluoromethyl)phenyl]phosphane oxide, (R(f))(2)P(O)H, reacts smoothly with solid platinum(II) dichloride yielding the trans-configured phosphinous acid platinum complex trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)]. The deprotonation of one phosphinous acid ligand with an appropriate base leads to the cis-configured monoanion complex cis-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H](-), featuring the quasi-chelating phosphinous acid phosphinito unit, (R(f))(2)P-O-H···O=P(R(f))(2), which exhibits a strong hydrogen bridge substantiated by an O···O distance of 245.1(4) pm. The second deprotonation step is accompanied by a rearrangement to afford the trans-configured dianion trans-[PtCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)](2-). The reaction of (R(f))(2)P(O)H with solid palladium(II) dichloride initially yields a mononuclear palladium complex [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)], which condenses under liberation of HCl to the neutral dinuclear palladium complex [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)]. The equilibrium between the mononuclear [PdCl(2)({2,4-(CF(3))(2)C(6)H(3)}(2)POH)(2)] and dinuclear [Pd(2)(μ-Cl)(2){({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H}(2)] palladium complexes is reversible and can be shifted in each direction by the addition of base or HCl, respectively. Treatment of palladium(II) hexafluoroacetylacetonate, [Pd(F(6)acac)(2)], with a slight excess of (R(f))(2)P(O)H yields the complex [Pd(F(6)acac)({2,4-(CF(3))(2)C(6)H(3)}(2)PO)(2)H]. The quasi-chelating phosphinous acid phosphinito unit, which is formed by the liberation of HF(6)acac, is characterized by a O···O distance of 244.1(3) pm. These transition metal complexes are stable towards air and moisture and can be stored for months without any evidence of decomposition.  相似文献   

8.
The diastereomeric methyl rhenium complex [CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)] was prepared in two steps from chiral racemic [CpRe(NO)(CO)(NCMe)]BF4 and the chiral racemic phosphine P(Me)(Ph)(2-C6H4NMe2). The unlike diastereomer reacts preferentially with MeSO3H to give the ring-closed ionic complex unlike-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 along with unreacted like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)], which is easily separated and converted to like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3. Starting from (R)-P(Me)(Ph)(2-C6H4NMe2), the diastereomerically and enantiomerically pure complexes (RRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 and (SRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 were obtained. Thus, this reaction sequence demonstrates a highly diastereoselective proton transfer from a functionalized chiral phosphine to a transition metal. Furthermore, it provides efficient access to enantiomerically pure half-sandwich rhenium complexes.  相似文献   

9.
A series of metal-organic hybrid compounds were synthesized using two new phosphonic acids, pyridyl-4-phosphonic acid and p-xylylenediphosphonic acid (H(2)O(3)PCH(2)C(6)H(4)CH(2)PO(3)H(2)). The phosphonic acid ligands have been synthesized from their corresponding bromides following two different types of reactions. The reaction of pyridyl-4-phosphonic acid with three different divalent metal salts results in the formation of molecular structures of different dimensionality. The reaction of Cu(II) with the phosphonic acid under hydrothermal conditions yields a three-dimensional (3D) open framework structure having the molecular formula [Cu(4)(NC(5)H(4)-PO(3))(4)(H(2)O)(10)] (1). The reactions with Mn(II) and Zn(II) salts with the same phosphonic acid resulted in a two-dimensional layered and a dinuclear compound with molecular formulas [Mn(3)(NC(5)H(4)-PO(3))(4)(H(2)O)(6)(ClO(4))(2)] (2) and [Zn(2)(NHC(5)H(4)-PO(3)H)(2)Cl(4)] (3), respectively. Compound 1 crystallizes in the triclinic crystal system having space group P with structural parameters a = 7.4564(15) Angstrom, b = 9.1845(19) Angstrom, c = 11.582(2) Angstrom, alpha = 100.842(3) degrees, beta = 104.303(3) degrees, gamma = 94.774(3) degrees, and Z = 1. Compound 2 crystallizes in the triclinic crystal system, space group P, with structural parameters a = 7.6871(14) Angstrom, b = 10.576(2) Angstrom, c = 14.470(3)Angstrom, alpha = 81.340(3) degrees, beta = 81.561(3) degrees, gamma = 68.757(3) degrees, and Z = 2, whereas compound 3 crystallizes in a monoclinic crystal system with space group P2(1)/n. The structural parameters are as follows: a = 8.4969 (5) Angstrom, b = 9.3911 (5) Angstrom, c = 12.3779 (6) Angstrom, beta = 90.860(17) degrees, and Z = 4. The pyridylphosphonate ligand shows different ligation behavior toward the three divalent metal ions. On the other hand, p-xylylenediphosphonic acid on reaction with Co(II) formed a 3D compound [Co(2)(O(3)PCH(2)C(6)H(4)CH(2)PO(3))(2)(H(2)O)(2)] (4) with a layered and pillared structure. Compound 4 crystallizes in an orthorhombic crystal system with space group Pnma. The structural parameters are a = 21.744(4) Angstrom, b = 5.6744(10) Angstrom, c = 4.7927(9) Angstrom, and Z = 4.  相似文献   

10.
New Pt(eta2-acetato){[(R)(Ph)PO]2H} complexes 3 prepared from PtCl2(CH3CN)2 and secondary phosphine oxides (SPOs) catalyzed the [2+1] cycloaddition of phenylethyne (5a) with norbornene derivatives 4 to afford benzylidenecyclopropanes.  相似文献   

11.
The mono- and binuclear aryldiazene complexes [Re(C6H5N=NH)(CO)5-nPn]BY4 (1-5) and [(Re(CO)5-nPn)2-(mu-HN=NAr-ArN=NH)](BY4)2 (6-12) [P = P(OEt)3, PPh(OEt)2, PPh2OEt; n = 1-4; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-(2-CH3)C6H3-C6H3(2-CH3), 4,4'-C6H4-CH2-C6H4; Y = F, Ph) were prepared by reacting the hydride species ReH(CO)5-nPn with the appropriate mono- and bis(aryldiazonium) cations. These compounds, as well as other prepared compounds, were characterized spectroscopically (IR; 1H, 31P, 13C, and 15N NMR data), and 1a was also characterized by an X-ray crystal structure determination. [Re(C6H5N=NH)(CO)(P(OEt)3)4]BPh4 (1a) crystallizes in space group P1 with a = 15.380(5) A, b = 13.037(5) A, c = 16.649(5) A, alpha = 90.33(5) degrees, beta = 91.2(1) degrees, gamma = 89.71(9) degrees, and Z = 2. The "diazene-diazonium" complexes [M(CO)3P2(HN=NAr-ArN identical to N)](BF4)2 (13-15, 17) [M = Re, Mn; P = PPh2OEt, PPh2OMe, PPh3; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4] and [Re(CO)4(PPh2OEt)(4,4'-HN=NC6H4-C6H4N identical to N)](BF4)2 (16b) were synthesized by allowing the hydrides MH(CO)3P2 or ReH(CO)4P to react with equimolar amounts of bis(aryldiazonium) cations under appropriate conditions. Reactions of diazene-diazonium complexes 13-17 with the metal hydrides M2H2P'4 and M2'H(CO)5-nP"n afforded the heterobinuclear bis(aryldiazene) derivatives [M1(CO)3P2(mu-HN=NAr-ArN=NH)M2HP'4](BPh4)2 (ReFe, ReRu, ReOs, MnRu, MnOs) and [M1(CO)3P2(mu-HN=NAr-ArN=NH)M2'(CO)5-nP"n](BPh4)2 (ReMn, MnRe) [M1 = Re, Mn; M2 = Fe, Ru, Os; M2' = Mn, Re; P = PPh2OEt, PPh2OMe; P',P" = P(OEt)3, PPh(OEt)2; Ar-Ar = 4,4'-C6H4-C6H4, 4,4'-C6H4-CH2-C6H4; n = 1, 2]. The heterotrinuclear complexes [Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)M(P(OEt)3)4(mu-4,4'-HN=NC6H4- C6H4N=NH)Mn(CO)3(PPh2OEt)2](BPh4)4 (M = Ru, Os) (ReRuMn, ReOsMn) were obtained by reacting the heterobinuclear complexes ReRu and ReOs with the appropriate diazene-diazonium cations. The heterobinuclear complex with a bis(aryldiazenido) bridging ligand [Mn(CO)2(PPh2OEt)2(mu-4,4'-N2C6H4-C6H4N2)Fe(P(OEt)3)4]BPh4 (MnFe) was prepared by deprotonating the bis(aryldiazene) compound [Mn(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N=NH)Fe(4- CH3C6H4CN)(P(OEt)3)4](BPh4)3. Finally, the binuclear compound [Re(CO)3(PPh2OEt)2(mu-4,4'-HN=NC6H4-C6H4N2)Fe(CO)2(P(OPh)3)2](BPh4)2 (ReFe) containing a diazene-diazenido bridging ligand was prepared by reacting [Re(CO)3(PPh2OEt)2(4,4'-HN=NC6H4-C6H4N identical to N)]+ with the FeH2(CO)2(P(OPh)3)2 hydride derivative. The electrochemical reduction of mono- and binuclear aryldiazene complexes of both rhenium (1-12) and the manganese, as well as heterobinuclear ReRu and MnRu complexes, was studied by means of cyclic voltammetry and digital simulation techniques. The electrochemical oxidation of the mono- and binuclear aryldiazenido compounds Mn(C6H5N2)(CO)2P2 and (Mn(CO)2P2)2(mu-4,4'-N2C6H4-C6H4N2) (P = PPh2OEt) was also examined. Electrochemical data show that, for binuclear compounds, the diazene bridging unit allows delocalization of electrons between the two different redox centers of the same molecule, whereas the two metal centers behave independently in the presence of the diazenido bridging unit.  相似文献   

12.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

13.
The reaction of two equivalents of the functional phosphine ligand N-(diphenylphosphino)-1,3,4-thiadiazol-2-amine Ph2PNHC=NNCHS (2) with [PdCl2(NCPh)2] in the presence of NEt3 gives the neutral, P,N-chelated complex cis-[Pd(Ph2PN=CNN=CHS)2] ([Pd(2-H)2], 3b), which is analogous to the Pt(II) analogue cis-[Pt (Ph2PN=CNN=CHS)2] ([Pt(2-H)2], 3a) reported previously. These complexes function as chelating metalloligands when further coordinated to a metal through each of the CH-N atoms. In the resulting complexes, each endo-cyclic N donor of the thiadiazole rings is bonded to a different metal centre. Thus, the heterodinuclear palladium/platinum complexes cis-[Pt(Ph2PN=CNN=CHS)2PdCl2]([Pt(2-H)2·PdCl2], 4a) and cis-[Pd(Ph2PN=CNN=CHS)2PtCl2]([Pd(2-H)2·PtCl2], 4b) were obtained by reaction with [PdCl2(NCPh)2] and [PtCl2(NCPh)2], respectively. In contrast, reaction of 3a with [AuCl(tht)] occurred instead at the P-bound N atom, and afforded the platinum/digold complex cis-[Pt{Ph2PN(AuCl)=CNN=CHS}2] ([Pt(2-H)2(AuCl)2], 5). For comparison, reaction of 4a with HBF4 yielded cis-[Pt(Ph2PNH=CNN=CHS)2PdCl2](BF4)2([H24a](BF4)2, 6), in which the chelated PdCl2 moiety is retained. Complexes 3b, 4a·CH2Cl2, 4b·0.5C7H8, 5·4CHCl3 and 6 have been structurally characterized by X-ray diffraction.  相似文献   

14.
Blair S  Izod K  Clegg W 《Inorganic chemistry》2002,41(15):3886-3893
The secondary phosphine R(Me(2)NCH(2)-2-C(6)H(4))PH reacts with Bu(2)Mg to give the homoleptic complex Mg[PR(C(6)H(4)-2-CH(2)NMe(2))](2) (1) [R = CH(SiMe(3))(2)]. The analogous heavier alkaline earth metal complexes (THF)(n)Ae[PR(C(6)H(4)-2-CH(2)NMe(2))](2) [Ae = Ca (2), n = 0; Ae = Sr (3), Ba (4), n = 1] have been synthesized by metathesis reactions between K[PR(C(6)H(4)-2-CH(2)NMe(2))] and 0.5 equiv of the respective alkaline earth metal diiodide. Compounds 1-4 have been characterized by X-ray crystallography and multielement NMR spectroscopy. In the solid state, compounds 1-4 are monomeric, complexes 1 and 2 adopting a distorted tetrahedral geometry and complexes 3 and 4 adopting a distorted square pyramidal geometry (1: orthorhombic, P2(1)2(1)2(1), a = 11.413(3) A, b = 12.072(3) A, c = 32.620(11) A, Z = 4. 2: monoclinic, P2(1)/c, a = 9.5550(4) A, b = 17.4560(7) A, c = 24.5782(10) A, beta = 91.673(2) degrees, Z = 4. 3: monoclinic, C2/c, a = 15.0498(9) A, b = 13.0180(8) A, c = 24.3664(14) A, beta = 104.593(2) degrees, Z = 4. 4: monoclinic, C2/c, a = 15.2930(10) A, b = 13.0326(9) A, c = 24.6491(17) A, beta = 105.542(2) degrees, Z = 4). In toluene solution, compounds 2-4 are subject to dynamic processes which are attributed to a monomer-dimer equilibrium for which bridge-terminal exchange of the phosphanide ligands in the dimer may be frozen out at low temperatures.  相似文献   

15.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

16.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

17.
Kramer J  Koch KR 《Inorganic chemistry》2006,45(19):7843-7855
A detailed 195Pt NMR study of the distribution of Pt(IV) complex species resulting from the aquation of H2PtCl6, H2PtBr6, and mixtures of H2PtCl6/H2PtBr6 in water/dilute HClO4 has been carried out to obtain an understanding of the speciation in these solutions as relevant to the recovery of Pt(IV) complexes from process solutions. A species distribution plot of the [PtCl6]2-, [PtCl5(H2O)]-, and [PtCl4(H2O)2] shows that in equilibrated, relatively concentrated H2PtCl6 solutions ([Pt]t > 0.12 M), the [PtCl4(H2O)2] species is below the 195Pt NMR detection limit; for [Pt]t concentrations < 0.1 M, the relative concentrations of the [PtCl5(H2O)]- and [PtCl4(H2O)2] species increase significantly, as a result of relatively rapid aquation of the [PtCl6]2- and [PtCl5(H2O)]- complexes under these conditions. From this (195)Pt NMR data the aquation constants of [PtCl6]2- and [PtBr6]2- of log K6 approximately 1.75 +/- 0.05 and log K6 approximately 2.71 +/- 0.15, respectively, have been determined at 30 degrees C. In mixtures of H2PtCl6/H2PtBr6 in water, a number of previously unidentified aquated complexes of the general formula [PtCl(5-n)Br(n)(H2O)]- (n = 0-5) could be identified, including the possible geometrical isomers of these complexes. These 195Pt NMR assignments were confirmed by remarkably systematic, linear relationships between the 195Pt chemical shift increments induced by substitution of Cl- ions by n Br- ions in [PtCl(6-n)Br(n)]2- and [PtCl(5-n)Br(n)(H2O)]- complexes. Preferential extraction of the [PtX6]2- (X = Cl, Br, or a mixture of the two halides) species over their corresponding aquated [PtX5(H2O)]- counterparts by silica-based diethylenetriamine anion exchangers could be demonstrated by means of 195Pt NMR spectroscopy.  相似文献   

18.
The first imidazole-type carbene complex of platinum(II), cis-(C2H4)(1-ethyl-3-methylimidazol-2-ylidene)PtCl2, has been obtained by reacting PtCl2 and PtCl4 with ethylene in the basic [EMIM]Cl/AlCl3 (1.3:1) ionic liquid (where [EMIM]+ = 1-ethyl-3-methylimidazolium) at 200 degrees C and structurally characterized (monoclinic P21/c space group, a = 10.416(2) A, b = 7.3421(9) A, c = 15.613(2) A, beta = 101.53(2) degrees, Z = 4). This complex can be regarded as a stable analogue of the pi-alkene-Pd(II)-carbene intermediate in the Heck reaction. In addition, a series of new N,N'-dialkylimidazolium salts of platinum group metals of the type [RMIM]2[MCln], where [RMIM+] = 1-alkyl-3-methylimidazolium and M = Pt(II), Pt(IV), or Ir(IV), have been prepared and characterized. The salts [EMIM]2[PtCl6] (1) and [EMIM]2[PtCl4] (2) were prepared in the ionic liquid [EMIM]Cl/AlCl3 and the salts [BMIM]2[PtCl4] (3) and [BMIM]2[PtCl6] (4) (where [BMIM]+ = 1-n-butyl-3-methylimidazolium) and [EMIM]2-[IrCl6] (5) in aqueous or acetonitrile media. From TGA measurements, salts 1-5 decompose in air in several steps eventually to form the corresponding metal, the onset of decomposition being observed at (degree C) 260 (1), 220 (2), 200 (3), 215 (4), and 210 (5). The structures of 1, 2, and 5 were determined by single-crystal X-ray analysis. The three salts crystallize in the monoclinic P21/n space group (1, a = 7.6433(9) A, b = 16.353(2) A, c = 9.213(1) A, beta = 113.56(1) degrees, Z = 2; 2, a = 8.601(1) A, b = 8.095(2) A, c = 13.977(2) A, beta = 91.75(2) degrees, Z = 2; 5, a = 10.353(2) A, b = 9.759(2) A, c = 10.371(2) A, beta = 92.98(3) degrees, Z = 2).  相似文献   

19.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

20.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号