首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osmium(VI) nitrido complex TpOs(N)Cl(2) (1) has been prepared from K[Os(N)O(3)] and KTp in aqueous ethanolic HCl. It reacts rapidly with PhMgCl and related reagents with transfer of a phenyl group to the nitrido ligand. This forms Os(IV) metalla-analido complexes, which are readily protonated to give the analido complex TpOs(NHPh)Cl(2) (4). The nitrido-phenyl derivatives TpOs(N)PhCl and TpOs(N)Ph(2) react more slowly with PhMgCl and are not competent intermediates for the reaction of 1 with PhMgCl. Reactions of 1 with alkyl- and arylboranes similarly result in transfer of one organic group to nitrogen, leading to isolable borylamido complexes such as TpOs[N(Ph)(BPh(2))]Cl(2) (11). This is an unprecedented insertion of a nitrido ligand into a boron--carbon bond. Hydrolysis of 11 gives 4. Mechanistic studies suggest that both the Grignard and borane reactions proceed by initial weak coordination of Mg or B to the nitrido ligand, followed by migration of the carbanion to nitrogen. The hydrocarbyl group does not go to osmium and then move to nitrogen--there is no change in the atoms bound to the osmium during the reactions. It is suggested that there may be a general preference for nucleophiles to add directly to the metal--ligand multiple bond rather than binding to the metal first and migrating. Ab initio calculations show that the unusual reactivity of 1 results from its accessible LUMO and LUMO + 1, which are the Os = N pi* orbitals. The bonding in 1 and its reactivity with organoboranes are reminiscent of CO.  相似文献   

2.
Mixed-ligand hydrazine complexes [M(CO)(RNHNH2)P4](BPh4)2 (1, 2) [M = Ru, Os; R = H, CH3, C6H5; P = P(OEt)3] with carbonyl and triethyl phosphite were prepared by allowing hydride [MH(CO)P4]BPh4 species to react first with HBF4.Et2O and then with hydrazines. Depending on the nature of the hydrazine ligand, the oxidation of [M(CO)(RNHNH2)P4](BPh4)2 derivatives with Pb(OAc)4 at -30 C gives acetate [M(kappa1-OCOCH3)(CO)P4]BPh4 (3a), phenyldiazene [M(CO)(C6H5N=NH)P4](BPh4)2 (3c, 4c), and methyldiazene [M(CO)(CH3N=NH)P4](BPh4)2 (3b, 4b) derivatives. Methyldiazene complexes 3b and 4b undergo base-catalyzed tautomerization of the CH3N=NH ligand to formaldehyde-hydrazone NH2N=CH2, giving the [M(CO)(NH2N=CH2)P4](BPh4)2 (5, 6) derivatives. Complexes 5 and 6 were characterized spectroscopically and by the X-ray crystal structure determination of the [Ru(CO)(NH2N=CH2)[P(OEt)3]4](BPh4)2 (5) derivative. Acetone-hydrazone [M(CO)[NH2N=C(CH3)2]P4](BPh4)2 (7, 8) complexes were also prepared by allowing hydrazine [M(CO)(NH2NH2)P4](BPh4)2 derivatives to react with acetone.  相似文献   

3.
Addition of amine nucleophiles to acetonitrile solutions of the OsIV anilido complex TpOs(NHPh)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] gives products with derivatized anilido ligands, i.e., TpOs[NH-p-C6H4(N(CH2)5)]Cl2 (2) from piperidine and TpOs[NH-p-C6H4N(CH2)4]Cl2 (3) from pyrrolidine. These materials are formed in approximately 30% yield under anaerobic conditions, together with approximately 60% yields of the OsIII aniline complex TpOs(NH2Ph)Cl2 (5). Formation of the para-substituted materials 2 or 3 from 1 involves oxidative removal of two hydrogen atoms (two H+ and two e-). The oxidation can be accomplished by 1, forming 5, or by O2. Related reactions have been observed with other amines and with the 2-naphthylamido derivative, which gives an ortho-substituted product. Kinetic studies indicate an addition-elimination mechanism involving initial attack of the amine nucleophile on the anilido ligand. These are unusual examples of nucleophilic aromatic substitution of hydrogen. Ab initio calculations on 1 show that the LUMO has significant density at the ortho and para positions of the anilido ligand, resembling the LUMO of nitrobenzene. By analogy with nucleophilic aromatic substitution, 2 is quantitatively formed from piperidine and the p-chloroanilide TpOs(NH-p-C6H4Cl)Cl2 (7). Binding the anilide ligands to an oxidizing OsIV center thus causes a remarkable umpolung or inversion of chemical character from a typically electron-rich anilido to an electron-deficient aromatic functionality. This occurs because of the coupling of redox changes at the TpOsIV center with bond formation at the coordinated ligand.  相似文献   

4.
The novel incomplete cuboidal cluster [W3Se4H3(dmpe)3](PF6), [1](PF6), has been prepared by reduction of [W3Se4Br3(dmpe)3](PF6) with LiBH4 in THF solution. The trihydroxo complex [W3Se4(OH)3(dmpe)3](PF6), [2](PF6), was obtained by reacting [W3Se4Br3(dmpe)3](PF6) with NaOH in MeCN-H2O solution. The complexes [1](PF6) and [2](PF6) were converted to their BPh4- salts by treatment with NaBPh4. Recrystallisation of [1](BPh4) in the presence of traces of water affords the mixed dihydride hydroxo complex [W3Se4H2(OH)(dmpe)3](BPh4). The crystal structures of [1](BPh4), [2](BPh4) and [W3Se4H2(OH)(dmpe)3](BPh4) have been resolved. Although the [1]+ trihydride does not react with an excess of halide salts, reaction with HX leads to [W3Se4X3(dmpe)3]+ (X = Cl, Br). The kinetics of this reaction has been studied at 25 degrees C in MeCN-H2O solution (1:1, v/v) and found to occur with two consecutive kinetic steps. The first step is independent of the nature and concentration of the X(-) anion but shows a first order dependence on the concentration of acid (k1 = 12.0 mol(-1) dm(3) s(-1)), whereas the second one is independent of the nature and concentration of both the acid and added salts (k2 = 0.024 s(-1)). In contrast, the reaction of [2]+ with acids occurs in a single step with kobs = 0.63 s(-1)(HCl) and 0.17 s(-1)(HBr). These kinetic results are discussed on the basis of the mechanism previously proposed for the reactions of the analogous [W3S4H3(dmpe)3]+ cluster, with special emphasis on the effects caused by the change of S by Se on the rate constants for the different processes involved.  相似文献   

5.
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3]]BPh4 (7) complex was also prepared by reacting RuCl2(bpy)2.2H2O with phosphite and ethanol. Treatment of the chloro complexes 1-3 and 7 with NaBH4 yielded the hydride [RuH(N-N)P3]BPh4 (4-6) and [RuH(bpy)2P]BPh4 (8) derivatives, which were characterized spectroscopically and by the X-ray crystal structure determination of [RuH(bpy)[P(OEt)3]3]BPh4 (4a). Protonation reaction of the new hydrides with Br?nsted acid was studied and led to dicationic [Ru(eta2-H2)(N-N)P3]2+ (9, 10) and [Ru(eta(2-H2)(bpy)2P]2+ (11) dihydrogen derivatives. The presence of the eta2-H2 ligand was indicated by a short T(1 min) value and by the measurements of the J(HD) in the [Ru](eta2-HD) isotopomers. From T(1 min) and J(HD) values the H-H distances of the dihydrogen complexes were also calculated. A series of ruthenium complexes, [RuL(N-N)P3](BPh4)2 and [RuL(bpy)2P](BPh4)2 (P = P(OEt)3; L = H2O, CO, 4-CH3C6H4NC, CH3CN, 4-CH3C6H4CN, PPh(OEt)2], was prepared by substituting the labile eta2-H2 ligand in the 9, 10, 11 derivatives. The reactions of the new hydrides 4-6 and 8 with both mono- and bis(aryldiazonium) cations were studied and led to aryldiazene [Ru(C6H5N=NH)(N-N)P3](BPh4)2 (19, 21), [[Ru(N-N)P3]2(mu-4,4'-NH=NC6H4-C6H4N=NH)](BPh4)4 (20), and [Ru(C6H5N=NH)(bpy)2P](BPh4)2 (22) derivatives. Also the heteroallenes CO2 and CS2 reacted with [RuH(bpy)2P]BPh4, yielding the formato [Ru[eta1-OC(H)=O](bpy)2P]BPh4 and dithioformato [Ru[eta1-SC(H)=S](bpy)2P]BPh4 derivatives.  相似文献   

6.
Iron(II)-phenylpyruvate complexes of tetradentate tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA) and tridentate benzyl bis(2-quinolinylmethyl)amine (Bn-BQA) were prepared to gain insight into C-C bond cleavage catalyzed by dioxygenase enzymes. The complexes we have prepared and characterized are [Fe(6-Me3-tpa)(prv)][BPh4] (1), [Fe2(6-Me3-tpa)2(pp)][(BPh4)2] (2), and [Fe2(6-Me3-tpa)2(2'-NO2-pp)][(BPh4)2] (3), [Fe(6-Me3-tpa)(pp-Me)][BPh4] (4), [Fe(6-Me3-tpa)(CN-pp-Et)][BPh4] (5), and [Fe(Bn-bqa)(pp)] (8), in which PRV is pyruvate, PP is the enolate form of phenylpyruvate, 2'-NO2-PP is the enolate form of 2'-nitrophenylpyruvate, PP-Me is the enolate form of methyl phenylpyruvate, and CN-PP-Et is the enolate form of ethyl-3-cyanophenylpyruvate. The structures of mononuclear complexes 1 and 5 were determined by single-crystal X-ray diffraction. Both the PRV ligand in 1 and the CN-PP-Et ligand in 5 bind to the iron(II) center in a bidentate manner and form 5-membered chelate rings, but the alpha-keto moiety is in the enolate form in 5 with concomitant loss of a C-H(beta) proton. The PP ligands of 2, 3, 4, and 8 react with dioxygen to form benzaldehyde and oxalate products, which indicates that the C2-C3 PP bond is cleaved, in contrast to cleavage of the C1-C2 bond previously observed for complexes that do not contain alpha-ketocarboxylate ligands in the enolate form. These reactions serve as models for metal-containing dioxygenase enzymes that catalyze the cleavage of aliphatic C-C bonds.  相似文献   

7.
Depending on experimental conditions and the nature of the hydrazine, the reactions of ReCl3P3 [P = PPh(OEt)2] with RNHNH2 (R = H, CH3, tBu) afford the bis(dinitrogen) [Re(N2)2P4]+ (2+), dinitrogen ReClN2P4 (3), and methyldiazenido [ReCl(CH3N2)(CH3NHNH2)P3]+ (1+) derivatives. In contrast, reactions of ReCl3P3 [P = PPh(OEt)2, PPh2OEt] with arylhydrazines ArNHNH2 (Ar = Ph, p-tolyl) give the aryldiazenido cations [ReCl(ArN2)(ArNHNH2)P3]+ (4+) and [ReCl(ArN2)P4]+ (7+) and the bis(aryldiazenido) cations [Re(ArN2)2P3]+ (5+, 6+). These complexes were characterized spectroscopically (IR; 1H and 31P NMR), and the BPh4 complexes 1, 2, and 7 were characterized crystallographically. The methyldiazenido derivative [ReCl(CH3N2)(CH3NHNH2)(PPh(OEt)2)3][BPh4] (1) crystallizes in space group P1 with a = 15.396(5) A, b = 16.986(5) A, c = 11.560(5) A, alpha = 93.96(5) degrees, beta = 93.99(5) degrees, gamma = 93.09(5) degrees, and Z = 2 and contains a singly bent CH3N2, group bonded to an octahedral central metal. One methylhydrazine ligand, one Cl- trans to the CH3N2, and three PPh(OEt)2 ligands complete the coordination. The complex [Re(N2)2(PPh(OEt)2)4][BPh4] (2) crystallizes in space group Pbaa with a = 23.008(5) A, b = 23.367(5) A, c = 12.863(3) A, and Z = 4. The structure displays octahedral coordination with two end-on N2 ligands in mutually trans positions. [ReCl(PhN2)(PPh(OEt)2)4][BPh4] (7) crystallizes in space group P2(1)/n with a = 19.613(5) A, b = 20.101(5) A, c = 19.918(5) A, beta = 115.12(2) degrees, and Z = 4. The structure shows a singly bent phenyldiazenido group trans to the Cl- ligand in an octahedral environment. The dinitrogen complex ReClN2P4 (3) reacts with CF3SO3CH3 to give the unstable methyldiazenido derivative [ReCl(CH3N2)P4][BPh4]. Reaction of the methylhydrazine complex [ReCl(CH3N2)(CH3NHNH2)P3][BPh4] (1) with Pb(OAc)4 at -30 degrees C results in selective oxidation of the hydrazine, affording the corresponding methyldiazene derivative [ReCl(CH3N=NH)(CH3N2)P3][BPh4] (8). In contrast, treatment with Pb(OAc)4 of the related arylhydrazines [ReCl(ArN2)(ArNHNH2)P3][BPh4] (4) [P = PPh(OEt)2] gives the bis(aryldiazenido) complexes [Re(ArN2)2P3][BPh4] (5). Possible protonation reactions of Br?nsted acids HX with all diazenides, 1, 4, 5, 6, and 8, were investigated and found to proceed only in the cases of the bis(aryldiazenido) complexes 5 and 6, affording, with HCl, the octahedral [ReCl(ArN=NH)(ArN2)P3][BPh4] or [ReCl(Ar(H)NN)(ArN2)P3][BPh4] (10) (Ar = Ph; P = PPh2OEt) derivative.  相似文献   

8.
Triazenide [M(eta2-1,3-ArNNNAr)P4]BPh4 [M = Ru, Os; Ar = Ph, p-tolyl; P = P(OMe)3, P(OEt)3, PPh(OEt)2] complexes were prepared by allowing triflate [M(kappa2-OTf)P4]OTf species to react first with 1,3-ArN=NN(H)Ar triazene and then with an excess of triethylamine. Alternatively, ruthenium triazenide [Ru(eta2-1,3-ArNNNAr)P4]BPh4 derivatives were obtained by reacting hydride [RuH(eta2-H2)P4]+ and RuH(kappa1-OTf)P4 compounds with 1,3-diaryltriazene. The complexes were characterized by spectroscopy and X-ray crystallography of the [Ru(eta2-1,3-PhNNNPh){P(OEt)3}4]BPh4 derivative. Hydride triazene [OsH(eta1-1,3-ArN=NN(H)Ar)P4]BPh4 [P = P(OEt)3, PPh(OEt)2; Ar = Ph, p-tolyl] and [RuH{eta1-1,3-p-tolyl-N=NN(H)-p-tolyl}{PPh(OEt)2}4]BPh4 derivatives were prepared by allowing kappa1-triflate MH(kappa1-OTf)P4 to react with 1,3-diaryltriazene. The [Os(kappa1-OTf){eta1-1,3-PhN=NN(H)Ph}{P(OEt)3}4]BPh4 intermediate was also obtained. Variable-temperature NMR studies were carried out using 15N-labeled triazene complexes prepared from the 1,3-Ph15N=N15N(H)Ph ligand. Osmium dihydrogen [OsH(eta2-H2)P4]BPh4 complexes [P = P(OEt)3, PPh(OEt)2] react with 1,3-ArN=NN(H)Ar triazene to give the hydride-diazene [OsH(ArN=NH)P4]BPh4 derivatives. The X-ray crystal structure determination of the [OsH(PhN=NH){PPh(OEt)2}4]BPh4 complex is reported. A reaction path to explain the formation of the diazene complexes is also reported.  相似文献   

9.
The ligands, PhPNXMe (1), PhPNXPh (2), and PhPNSMe (3), (PhPNX = 2-Ph2P-C6H4CH[double bond, length as m-dash]NC6H4X-2; X = O, S) have been prepared. A range of new ruthenium complexes were synthesised using these and related ligands, namely: [{RuCl(PhPNO)}2Cl] (4), [Ru(PhPNO)2] (5), [RuCl(PhPNXR)(PPh3)]BPh4 [X = O, R = Me (6); X = O, R = Ph (7); X = S, R = Me (8)], [{RuCl(PhPNX'R)}2Cl]X [X' = O, R = Me, X = Cl(-) (9); X' = S, R = Me, X = BPh4(-) or PF6(-) (10)], and [RuCl(PhPNO-eta 6C6H5)]BPh4 (11). The catalytic activity of these complexes with respect to the hydrosilyation of acetophenone and the hydrogenation of styrene has been investigated, giving an insight into the requirements for an active complex in these reactions.  相似文献   

10.
Azobenzene-conjugated mononuclear and dinuclear terpyridyl complexes of Co(II), Co(III), and Fe(II) were synthesized, and their photoisomerization behavior was investigated. Co(II) and Co(III) complexes, [tpyCo(tpy-AB)]X(n) and [(Cotpy)(2)(tpy-AB-tpy)]X(n) (tpy-AB = C(15)N(3)H(10)-C(6)H(4)-N=NC(6)H(5), tpy-AB-tpy = C(15)N(3)H(10)-C(6)H(4)-N=NC(6)H(4)-C(15)N(3)H(10), X = PF(6) or BPh(4)), exhibit trans-to-cis photoisomerization by irradiation at 366 nm, and this behavior is dependent on solvents and counterions. For the Co(II) complexes, BPh(4) salts undergo cis-to-trans isomerization in propylene carbonate by both photoirradiation with visible light (435 nm) and heat, indicating that reversible trans-cis isomerization has occurred. [Co(tpy-AB)(2)](BPh(4))(2) shows a two-step trans-to-cis isomerization process. The trans-cis isomerization behavior of Co(III) complexes was observed only in the solvents with a low donor number such as 1,2-dichloroethane. Fe(II) complexes, [tpyFe(tpy-AB)]X(n) (X = PF(6) or BPh(4)), exhibit slight trans-to-cis photoisomerization due to the energy transfer from the azobenzene moiety to Fe(tpy)(2) moieties.  相似文献   

11.
We report a combined experimental and computational comparative study of the reactions of the homologous titanium dialkyl- and diphenylhydrazido and imido compounds Cp*Ti{MeC(N(i)Pr)(2)}(NNR(2)) (R = Me (1) or Ph (2)) and Cp*Ti{MeC(N(i)Pr)(2)}(NTol) (3) with silanes, halosilanes, alkyl halides and [Et(3)NH][BPh(4)]. Compound 1 underwent reversible Si-H 1,2-addition to Ti=N(α) with RSiH(3) (experimental ΔH ca. -17 kcal mol(-1)), and irreversible addition with PhSiH(2)X (X = Cl, Br). DFT found that the reaction products and certain intermediates were stabilised by β-NMe(2) coordination to titanium. The Ti-D bond in Cp*Ti{MeC(N(i)Pr)(2)}(D){N(NMe(2))SiD(2)Ph} underwent σ-bond metathesis with BuSiH(3) and H(2). Compound 1 reacted with RR'SiCl(2) at N(α) to transfer both Cl atoms to Ti; 2 underwent a similar reaction. Compound 3 did not react with RSiH(3) or alkyl halides but formed unstable Ti=N(α) 1,2-addition or N(α) protonation products with PhSiH(2)X or [Et(3)NH][BPh(4)]. Compound 1 underwent exclusive alkylation at N(β) with RCH(2)X (R = H, Me or Ph; X = Br or I) whereas protonation using [Et(3)NH][BPh(4)] occurred at N(α). DFT studies found that in all cases electrophile addition to N(α) (with or without NMe(2) chelation) was thermodynamically favoured compared to addition to N(β).  相似文献   

12.
Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.  相似文献   

13.
The osmium(VI) nitrido complex TpOs(N)Cl(2) [1, Tp = hydrotris(1-pyrazolyl)borate] reacts with triarylphosphines to afford the Os(IV) phosphiniminato complexes TpOs(NPAr(3))Cl(2) [Ar = p-tolyl (tol) (2a), phenyl (2b), p-CF(3)C(6)H(4) (2c)] in nearly quantitative yield. Protonation of 2a-c with 1 equiv of HOTf in MeCN occurs at the phosphiniminato nitrogen to give [TpOs(IV)(NHPAr(3))Cl(2)]OTf (3a-c) in 68-80% yield. Solutions of 2a-c in CH(2)Cl(2) react with excess H(2)O over 1 week to form the disproportionation products 1 (28%), TpOs(III)(NHPAr(3))Cl(2) (4a-c) (60%), and OPAr(3) (35%). Treatment of solutions of 3a-c with H(2)O also affords 1, 4a-c, and OPAr(3). X-ray structures of 2b, 3b, and 4b are presented. Cyclic voltammograms of compounds 2a-c exhibit Os(V)/Os(IV) and Os(IV)/Os(III) couples at approximately 0.3 and -1 V versus Cp(2)Fe(+/0). Protonation to give 3 makes reduction easier by approximately 1.2 V, so that these compounds show Os(IV)/Os(III) and Os(III)/Os(II) couples. In the hydrolytic disproportionation of 2a-c, labeling studies using (18)O-enriched O(2) and H(2)O establish water as the source of the oxygen atom in the OPAr(3) product. The conversions are accelerated by HOTf and inhibited by NaOD. The relative rates of hydrolytic disproportionation of 2a-c vary in the order tol > Ph > p-CF(3)C(6)H(4). The data indicate that protonation of the phosphiniminato nitrogen is required for hydrolysis. The mechanism of the hydrolytic disproportionation is compared to that of the related reaction of the osmium(IV) acetonitrile complex [TpOs(NCMe)Cl(2)](+).  相似文献   

14.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

15.
[Ti[N(Ph)SiMe2]3-tacn]X complexes (X = Cl, 1; I, 2; PF6, 3; BPh4, 4) were studied by NMR and electron absorption and emission methods, which showed that these compounds exist in bromobenzene and dichloromethane solutions as ion pairs. The significant modifications observed in the proton resonances of tacn in C6D5Br, which follow the sequence BPh(4-) > or = PF(6-) > or = I- approximately Cl-, are a qualitative indication of the strength of the interactions that depend on the anion. The reaction of 2 with LiNMe2 led to [Ti(NPh)[NPh(SiMe2)]2-tacn], 5, that forms upon attack of Me2N- at one SiMe2 group. The formation of 5 is discussed on the basis of the interactions identified in solution.  相似文献   

16.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom.  相似文献   

17.
A series of molybdenum and tungsten nitrido, [M(N)(X)(diphos)2], and imido complexes, [M(NH)(X)(diphos)2)]Y, (M = Mo, W) with diphosphine coligands (diphos = dppe/depe), various trans ligands (X = N3-, Cl-, NCCH3) and different counterions (Y-= Cl-, BPh4-) is investigated. These compounds are studied by infrared and Raman spectroscopies; they are also studied with isotope-substitution and optical-absorption, as well as emission, spectroscopies. In the nitrido complexes with trans-azido and -chloro coligands, the metal-N stretch is found at about 980 cm(-1); upon protonation, it is lowered to about 920 cm(-1). The 1A1 --> 1E (n --> pi) electronic transition is observed for [Mo(N)(N3)(depe)2] at 398 nm and shows a progression in the metal-N stretch of 810 cm(-1). The corresponding 3E --> 1A (pi --> n) emission band is observed at 542 nm, exhibiting a progression in the metal-N stretch of 980 cm(-1). In the imido system [Mo(NH)(N3)(depe)2]BPh4, the n --> pi transition is shifted to lower energy (518 nm) and markedly decreases in intensity. In the trans-nitrile complex [Mo(N)(NCCH3)(dppe)2]BPh4, the metal-N(nitrido) stretching frequency increases to 1016 cm(-1). The n --> pi transition now is found at 450 nm, shifting to 525 nm upon protonation. Most importantly, the reduction of this nitrido trans-nitrile complex is drastically facilitated compared to its counterparts with anionic trans-ligands (Epred = -1.5 V vs Fc+/Fc). On the other hand, the basicity of the nitrido group is decreased (pKa{[Mo(NH)(NCCH3)(dppe)2](BPh4)2} = 5). The implications of these findings with respect to the Chatt cycle are discussed.  相似文献   

18.
Azide complexes [M(RN(3))(CO)(3)P(2)]BPh(4)[M = Mn, Re; R = C(6)H(5)CH(2), 4-CH(3)C(6)H(4)CH(2), C(6)H(5), 4-CH(3)C(6)H(4), C(5)H(9); P = PPh(OEt)(2), PPh(2)(OEt)] were prepared by allowing tricarbonyl MH(CO)(3)P(2) hydride complexes to react first with Br?nsted acid (HBF(4), CF(3)SO(3)H) and then with organic azide in the dark. In sunlight the reaction yielded tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes or, with benzyl azide, imine [M{eta(1)-NH[double bond, length as m-dash]C(H)Ar}(CO)(3)P(2)]BPh(4)(Ar = C(6)H(5), 4-CH(3)C(6)H(4)) derivatives. Tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes were also prepared by reacting dicarbonyl MH(CO)(2)P(3) species first with Br?nsted acid and then with an excess of organic azide. Complexes were characterised spectroscopically (IR, (1)H, (31)P, (13)C, (15)N NMR data) and by the X-ray crystal structure determination of complex [Re{eta(2)-1,4-(C(6)H(5)CH(2))(2)N(4)}(CO)(2){PPh(OEt)(2)}(2)]BPh(4)(). Strong evidence for coordination of the organic azide was obtained from the (15)N NMR spectra of labelled [M(C(6)H(5)CH(2)(15)NN(15)N)(CO)(3)P(2)]BPh(4) derivatives.  相似文献   

19.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

20.
Tris(pyrazolyl)borate aryldiazenido complexes [RuTpLL'(ArN(2))](BF(4))(2) (1-3) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); Tp = hydridotris(pyrazolyl)borate; L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were prepared by allowing dihydrogen [RuTp(eta(2)-H(2))LL'](+) derivatives to react with aryldiazonium cations. Spectroscopic characterization (IR, (15)N NMR) using the (15)N-labeled derivatives strongly supports the presence of a linear [Ru]-NN-Ar aryldiazenido group. Hydrazine complexes [RuTp(RNHNH(2))LL']BPh(4) (4-6) [R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4); L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were also prepared by reacting the [RuTp(eta(2)-H(2))LL'](+) cation with an excess of hydrazine. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of the [RuTp(CH(3)NHNH(2))[P(OEt)(3)](PPh(3))]BPh(4) (4d) derivative. Tris(pyrazolyl)borate aryldiazene complexes [RuTp(ArN=NH)LL']BPh(4) (7-9) (Ar = C(6)H(5), 4-CH(3)C(6)H(4)) were prepared following three different methods: (i). by allowing hydride species RuHTpLL' to react with aryldiazonium cations in CH(2)Cl(2); (ii). by treating aryldiazenido [RuTpLL'(ArN(2))](BF(4))(2) with LiBHEt(3) in CH(2)Cl(2); (iii). by oxidizing arylhydrazine [RuTp(ArNHNH(2))LL']BPh(4) complexes with Pb(OAc)(4) in CH(2)Cl(2) at -30 degrees C. Methyldiazene complexes [RuTp(CH(3)N=NH)LL']BPh(4) were also prepared by the oxidation of the corresponding methylhydrazine [RuTp(CH(3)NHNH(2))LL']BPh(4) with Pb(OAc)(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号